Skip to main content
Log in

Neural Network Identification Based Multivariable Feedback Linearization Robust Control for a Two-Link Manipulator

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Regarding to the variations of the load and unmodeled dynamic, robot manipulators are known as a nonlinear dynamic system. Overcoming such problems like uncertainties and nonlinear characteristics in the model of two-link manipulator is the principal goal of this paper. To approach to this aim, a neural network is combined with a linear robust control in which the result has the advantages of, the first, approximated nonlinear elements and the second, the guaranteed robustness. To design the proposed controller, at first, multivariable feedback linearization is employed to convert the nonlinear model to linear one. Second, the unknown parameters of the system are identified by neural network based on a new proposed learning rule. Third, Mixed linear feedback-H ∞  robust control method is proposed to stabilize the closed loop system. The closed loop system based on the proposed controller is analyzed and some numerical simulations are performed. Results show suitable responses of the closed loop system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Spong, M.W., Hutchinson, S., Vidyasagar, S.: Robot Modeling and Control. Wiley, New York (2005)

    Google Scholar 

  2. Yu, W., Moreno-Armendariz, M.A.: Robust visual servoing of robot manipulators with neuro compensation. J. Frank. Inst. 342(7), 824–838 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Yu, W., Li, X.: PD control of robot with velocity estimation and uncertainties compensation. Int. J. Robot. Autom. 21(1), 1–9 (2006)

    MATH  Google Scholar 

  4. Rubio, J.J., Soriano, L.A.: An asymptotic stable proportional derivative control with sliding mode gravity compensation and with a high gain observer for robotic arms. Int. J. Innov. Comput. I. 6(11), 4513–4525 (2010)

    Google Scholar 

  5. Yi, S.Y., Chung, M.J.: A robust fuzzy logic controller for robot manipulators with uncertainties. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 27(4), 706–713 (1997)

    Article  Google Scholar 

  6. Wang, L.X.: A Course in Fuzzy Systems and Control. Prentice Hall, Englewood Cliffs (1997)

    MATH  Google Scholar 

  7. Levi, I., Berman, N., Ailon, A.: Robust adaptive nonlinear H∞ control for robot manipulators. In: Proceeding of The 15th Mediterranean Conference on Control & Automation, pp. 1–6 (2007)

  8. ShengWei, M., Xiao, Y.G., Chen, S., Qiang, L.: Dynamic extending nonlinear H∞ control and its application to hydraulic turbine governor. Sci. China. Ser. E 50(5), 618–635 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Yim, J., Park, J.H.: Nonlinear H∞ control of robotic manipulator. In: Proceeding of IEEE SMC ’99 Conference, pp. 866–871 (1999)

  10. Yu, L., Fei, S., Li, X.: Robust adaptive neural tracking control for a class of switched affine nonlinear systems. Neurocomputing 73(10–12), 2274–2279 (2010)

    Article  Google Scholar 

  11. Juang, C.F., Lin, C.T.: An online self-constructing neural fuzzy inference network and its applications. IEEE Trans. Fuzzy Syst. 6(1), 12–32 (1998)

    Article  Google Scholar 

  12. Rubio, J.J., Angelov, P., Pacheco, J.: Uniformly stable backpropagation algorithm to train a feedforward neural network. IEEE Trans. Neural Netw. 22(3), 356–366 (2011)

    Article  Google Scholar 

  13. Rubio, J.J.: Modified optimal control with a back propagation network for robotic arms. IET. Control Theory A. 6(14), 2216–2225 (2012)

    Article  MathSciNet  Google Scholar 

  14. Sun, T., Pei, H., Pan, Y., Zhou, H., Zhang, C.: Neural network-based sliding mode adaptive control for robot manipulators. Neurocomputing 74(14–15), 2377–2384 (2011)

    Article  Google Scholar 

  15. Vakil, M., Fotouhi, R., Nikiforuk, P.N.: Maneuver control of the multilink flexible manipulators. Int. J. Non-Linear Mech. 44(8), 831–844 (2009)

    Article  Google Scholar 

  16. Isidori, A.: Nonlinear Control Systems II. Springer, London (1999)

    Book  MATH  Google Scholar 

  17. Poursamad, A.: Adaptive feedback linearization control of antilock braking systems using neural networks. Mechatronics 19(5), 767–773 (2009)

    Article  MathSciNet  Google Scholar 

  18. Sahoo, N.C., Panigrahi, B.K., Dash, P.K., Panda, G.: Application of a multivariable feedback linearization scheme for STATCOM control. Electr. Power Syst. Res. 62(2), 81–91 (2002)

    Article  Google Scholar 

  19. Chen, J.L., Chang, W.D.: Feedback linearization control of a two-link robot using a multi-crossover genetic algorithm. Expert Syst. Appl. 36(2), 4154–4159 (2009)

    Article  Google Scholar 

  20. Aguilar, C., Suarez, M.S., Gutierres, O.O.: The direct Lyapunov method for the stabilization of the Furuta pendulum. Int. J. Control 83(11), 2285–2293 (2010)

    Article  MATH  Google Scholar 

  21. Angelov, P.P., Filev, D.P.: An approach to online identification of Takagi-Sugeno fuzzy models. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 34(1), 484–498 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Moradi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moradi, M., Malekizade, H. Neural Network Identification Based Multivariable Feedback Linearization Robust Control for a Two-Link Manipulator. J Intell Robot Syst 72, 167–178 (2013). https://doi.org/10.1007/s10846-013-9827-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-013-9827-5

Keywords

Navigation