Skip to main content

A Hierarchical Tracking Strategy for Vision-Based Applications On-Board UAVs

Abstract

In this paper, we apply a hierarchical tracking strategy of planar objects (or that can be assumed to be planar) that is based on direct methods for vision-based applications on-board UAVs. The use of this tracking strategy allows to achieve the tasks at real-time frame rates and to overcome problems posed by the challenging conditions of the tasks: e.g. constant vibrations, fast 3D changes, or limited capacity on-board. The vast majority of approaches make use of feature-based methods to track objects. Nonetheless, in this paper we show that although some of these feature-based solutions are faster, direct methods can be more robust under fast 3D motions (fast changes in position), some changes in appearance, constant vibrations (without requiring any specific hardware or software for video stabilization), and situations in which part of the object to track is outside of the field of view of the camera. The performance of the proposed tracking strategy on-board UAVs is evaluated with images from real-flight tests using manually-generated ground truth information, accurate position estimation using a Vicon system, and also with simulated data from a simulation environment. Results show that the hierarchical tracking strategy performs better than well-known feature-based algorithms and well-known configurations of direct methods, and that its performance is robust enough for vision-in-the-loop tasks, e.g. for vision-based landing tasks.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Campoy, P., Correa, J.F., Mondragón, I., Martínez, C., Olivares, M., Mejías, L., Artieda, J.: Computer vision onboard uavs for civilian tasks. J. Intell. Robot. Syst. 54(1–3), 105–135 (2009)

    Article  Google Scholar 

  2. 2.

    Mondragón, I.F., Campoy, P., Martinez, C., Olivares-Mendez, M.: 3D pose estimation based on planar object tracking for UAVs control. In: Proceedings of IEEE International Conference on Robotics and Automation 2010 ICRA2010, Anchorage, AK, USA (2010)

  3. 3.

    Mondragon, I., Campoy, P., Correa, J., Mejias, L.: Visual model feature tracking for uav control. In: IEEE International Symposium on Intelligent Signal Processing, 2007. WISP 2007, pp. 1–6, 3–5 (2007)

  4. 4.

    Torr, P.H.S., Zisserman, A.: Feature based methods for structure and motion estimation. In: ICCV ’99: Proceedings of the International Workshop on Vision Algorithms, pp. 278–294. Springer, London (2000)

    Chapter  Google Scholar 

  5. 5.

    Bouguet, J.Y.: Pyramidal implementation of the Lucas Kanade feature tracker: description of the algorithm. Technical report, OpenCV Document, Intel Microprocessor Research Labs (2002)

  6. 6.

    Irani, M., Anandan, P.: About direct methods. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) Vision Algorithms: Theory and Practice, Lecture Notes in Computer Science, vol. 1883, pp. 267–277. Springer, Berlin (2000)

    Chapter  Google Scholar 

  7. 7.

    Zhang, H., Yuan, F.: Vehicle tracking based on image alignment in aerial videos. In: EMMCVPR’07: Proceedings of the 6th International Conference on Energy Minimization Methods in Computer Vision and Pattern Recognition, pp. 295–302. Springer, Berlin (2007)

    Chapter  Google Scholar 

  8. 8.

    Ali, S., Shah, M.: Cocoa—tracking in aerial imagery. In: Proc. Int. Conf. on Computer Vision (2005)

  9. 9.

    Mejias, L., Saripalli, S., Campoy, P., Sukhatme, G.: Visual servoing approach for tracking features in urban areas using an autonomous helicopter. In: Proceedings of IEEE International Conference on Robotics and Automation, Orlando, Florida, pp. 2503–2508 (2006)

  10. 10.

    Choi, J.H., Lee, D., Bang, H.: Tracking an unknown moving target from uav: Extracting and localizing an moving target with vision sensor based on optical flow. In: 2011 5th International Conference on Automation, Robotics and Applications (ICARA), pp. 384–389 (2011)

  11. 11.

    Dame, A., Marchand, E.: Accurate real-time tracking using mutual information. In: IEEE Int. Symp. on Mixed and Augmented Reality, ISMAR’10, Seoul, Korea, pp. 47–56 (2010)

  12. 12.

    Baker, S., Matthews, I.: Equivalence and efficiency of image alignment algorithms. In: Proceedings of the 2001 IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 1090–1097 (2001)

  13. 13.

    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  14. 14.

    ViconMotion Systems: VICONMXdigital optical motion capture system. http://www.vicon.com (2011). Accessed 1 Oct 2011

  15. 15.

    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, New York (2003)

    Google Scholar 

  16. 16.

    Martinez, C., Mejias, L., Campoy, P.: A multi-resolution image alignment technique based on direct methods for pose estimation of aerial vehicles. In: Proceedings of the International Conference on Digital Image Computing Techniques and Applications (DICTA), 2011, pp. 542–548 (2011)

  17. 17.

    Anderson, C.H., Bergen, J.R., Burt, P.J., Ogden, J.M.: Pyramid methods in image processing. RCA Eng. 29(6), 33–41 (1984)

    Google Scholar 

  18. 18.

    Burt, P., Adelson, E.: The laplacian pyramid as a compact image code. IEEE Trans. Commun. 31(4), 532–540 (1983)

    Article  Google Scholar 

  19. 19.

    Bergen, J.R., Anandan, P., Hanna, T.J., Hingorani, R.: Hierarchical model-based motion estimation. In: Proceedings of the European Conference on Computer Vision, pp. 237–252 (1992)

  20. 20.

    Szeliski, R.: Image alignment and stitching: a tutorial. Found. Trends. Comput. Graph. Vis. 2(1), 1–104 (2006)

    Article  Google Scholar 

  21. 21.

    Buenaposada, J.M., Baumela, L.: Real-time tracking and estimation of plane pose. In: ICPR, pp. 697–700 (2002)

  22. 22.

    Benhimane, S., Malis, E.: Real-time image-based tracking of planes using efficient second-order minimization. In: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2004. (IROS 2004). Proceedings (2004)

  23. 23.

    Irani, M., Peleg, S.: Motion analysis for image enhancement: resolution, occlusion, and transparency. J. Vis. Commun. Image Represent. 4, 324–335 (1993)

    Article  Google Scholar 

  24. 24.

    Shum, H.-Y., Szeliski, R.: Construction of panoramic image mosaics with global and local alignment. In: Panoramic Vision, pp. 227–268. Springer, New York (2001)

    Chapter  Google Scholar 

  25. 25.

    Baker, S., Matthews, I.: Lucas-kanade 20 years on: a unifying framework. Int. J. Comput. Vis. 56(1), 221–255 (2004)

    Article  Google Scholar 

  26. 26.

    Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proceedings of the International Joint Conference on Artificial Intelligence, pp. 674–679 (1981)

  27. 27.

    Hager, G.D., Belhumeur, P.N.: Efficient region tracking with parametric models of geometry and illumination. IEEE Trans. Pattern Anal. Mach. Intell. 20(10), 1025–1039 (1998)

    Article  Google Scholar 

  28. 28.

    Bradski, G., Kaehler, A.: Learning OpenCV: Computer Vision with the OpenCV Library. O’Reilly (2008)

  29. 29.

    Simon, G., Berger, M.-O.: Pose estimation for planar structures. IEEE Comput. Graph. Appl. 22(6), 46–53 (2002)

    Article  Google Scholar 

  30. 30.

    Buenaposada, J.M., Baumela, L.: Real-time tracking and estimation of plane pose. In: Proceedings 16th International Conference on Pattern Recognition, 2002, vol. 2, pp. 697–700 (2002)

  31. 31.

    Zhang, Z.: Flexible camera calibration by viewing a plane from unknown orientations. In: IEEE International Conference on Computer Vision, vol. 1, p. 666 (1999)

  32. 32.

    Bouguet, J.Y.: Camera calibration toolbox for Matlab (2008)

  33. 33.

    Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000)

    Article  Google Scholar 

  34. 34.

    Videos. http://www.vision4uav.com/?q=HMPMRtracker. Accessed 1 Oct 2012

  35. 35.

    Computer Vision Group. Universidad Politécnica de Madrid. CVG 2010. http://www.vision4uav.com/. Accessed 1 Oct 2012

  36. 36.

    Quigley, M., Conley, K., Gerkey, B.P., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.: ROS: an open-source Robot Operating System. In: ICRA Workshop on Open Source Software (2009)

  37. 37.

    ROS-Gazebo. http://www.ros.org/wiki/simulator_gazebo (2012). Accessed 1 Sept 2012

  38. 38.

    Starmac-ros package. http://www.ros.org/wiki/starmac-ros-pkg. Accessed 1 Sept 2012

  39. 39.

    Hess, R.: SIFT feature detector implementation in C. http://www.web.engr.oregonstate.edu/hess/index.html (2007). Accessed 7 Mar 2013

  40. 40.

    Hess, R.: An open-source SIFT library. In: Proceedings of the International Conference on Multimedia, pp. 1493–1496 (2010)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Carol Martínez.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Martínez, C., Mondragón, I.F., Campoy, P. et al. A Hierarchical Tracking Strategy for Vision-Based Applications On-Board UAVs. J Intell Robot Syst 72, 517–539 (2013). https://doi.org/10.1007/s10846-013-9814-x

Download citation

Keywords

  • UAVs visual tracking
  • Direct methods
  • Vision-based landing
  • Pose estimation
  • Hierarchical tracking