Skip to main content

Cross-Entropy Optimization for Scaling Factors of a Fuzzy Controller: A See-and-Avoid Approach for Unmanned Aerial Systems

Abstract

The Cross-Entropy (CE) is an efficient method for the estimation of rare-event probabilities and combinatorial optimization. This work presents a novel approach of the CE for optimization of a Soft-Computing controller. A Fuzzy controller was designed to command an unmanned aerial system (UAS) for avoiding collision task. The only sensor used to accomplish this task was a forward camera. The CE is used to reach a near-optimal controller by modifying the scaling factors of the controller inputs. The optimization was realized using the ROS-Gazebo simulation system. In order to evaluate the optimization a big amount of tests were carried out with a real quadcopter.

This is a preview of subscription content, access via your institution.

References

  1. Zadeh, L.A.: Fuzzy logic and soft computing: issues, contentions and perspectives. In: Proc. IIZUKA94: 3rd Int. Conf. Fuzzy Logic, Neural Nets and Soft Computing, pp. 1–2 (1994)

  2. United States Department of Defense: [Online]. Available: http://www.defense.gov (2010). Accessed 1 May 2010

  3. Meister, O., Frietsch, N., Ascher, C., Trommer, G.: Adaptive path planning for a VTOL-UAV. In: Position, Location and Navigation Symposium, 2008 IEEE/ION, pp. 1252–1259 (2008)

  4. Moses, A., Rutherford, M., Valavanis, K.: Radar-based detection and identification for miniature air vehicles. In: 2011 IEEE International Conference on Control Applications (CCA), pp. 933–940 (2011)

  5. Hibrid System Laboratory, Berkeley University, Quadrotor and Kinect: [Online]. Available: http://hybrid.eecs.berkeley.edu/ (2012). Accessed 22 January 2012

  6. Lai, J.S., Mejias, L., Ford, J.J.: Airborne vision-based collision-detection system. J. Field Robot. 28(2), 137–157 (2011). [Online]. Available: http://eprints.qut.edu.au/32801/. Accessed 4 August 2010

    Article  MATH  Google Scholar 

  7. Mejias, L., Mondragon, I., Campoy, P.: Omnidirectional bearing-only see-and-avoid for small aerial robots. In: The 5th International Conference on Automation, Robotics and Applications. IEEE, Wellington (2011). [Online]. Available: http://eprints.qut.edu.au/46597/. Accessed 17 October 2011

  8. Mejias, L., McNamara, S., Lai, J.S., Ford, J.J.: Vision-based detection and tracking of aerial targets for UAV collision avoidance. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, Taipei (2010). [Online]. Available: http://eprints.qut.edu.au/32793/. Accessed 11 December 2010

  9. Shabayek, A.E.R., Demonceaux, C., Morel, O., Fofi, D.: Vision based UAV attitude estimation: progress and insights. J. Intell. Robot. Syst. 65(1–4), 295–308 (2012)

    Article  Google Scholar 

  10. Martinez, C., Mondragon, I., Olivares-Mendez, M., Campoy, P.: On-board and ground visual pose estimation techniques for UAV control. J. Intell. Robot. Syst. 61, 301–320 (2011). doi:10.1007/s10846-010-9505-9

    Article  Google Scholar 

  11. Dusha, D., Mejias, L.: Error analysis and attitude observability of a monocular GPS/visual odometry integrated navigation filter. Int. J. Rob. Res. 31(6), 714–737 (2012). [Online]. Available: http://eprints.qut.edu.au/46549/

    Article  Google Scholar 

  12. Hunt, K., Sbarbaro, D., Zbikowski, R., Gawthrop, P.: Neural networks for control systems: a survey. Automatica 28(6), 1083–1112 (1992). [Online]. Available: http://www.sciencedirect.com/science/article/pii/000510989290053I

    Article  MathSciNet  MATH  Google Scholar 

  13. Precup, R.-E., Hellendoorn, H.: A survey on industrial applications of fuzzy control. Comput. Ind. 62(3), 213–226 (2011). [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0166361510001363

    Article  Google Scholar 

  14. Zheng, L.: A practical guide to tune of proportional and integral (PI) like fuzzy controllers. In: IEEE International Conference on Fuzzy Systems, pp. 633–640 (1992)

  15. Malhotra, R., Singh, N., Singh, Y.: Soft computing techniques for process control applications. Int. J. Soft Comput. 2, 32–44 (2011)

    Article  Google Scholar 

  16. Bonissone, P., Khedkar, P., Chen, Y.: Genetic algorithms for automated tuning of fuzzy controllers: a transportation application. In: Proceedings of the Fifth IEEE International Conference on Fuzzy Systems, vol. 1, pp. 674–680 (1996)

  17. Li, W.: Optimization of a fuzzy controller using neural network. In: Proceedings of the Third IEEE Conference on Fuzzy Systems. IEEE World Congress on Computational Intelligence, vol. 1, pp. 223–227 (1994)

  18. Jang, J.-S.R.: ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 23, 665–685 (1993)

    Article  Google Scholar 

  19. Werbos, P.: Beyond regression: new tools for prediction and analysis in the behavioral sciences. Ph.D. dissertation, Harvard University, Cambridge, MA (1974)

  20. Bonissone, P.P., Chen, Y.-T., Goebel, K., Khedkar, P.S.: Hybrid soft computing systems: industrial and commercial applications. In Proceedings of the IEEE (1999)

  21. Rubinstein, R.Y.: Optimization of computer simulation models with rare events. Eur. J. Oper. Res. 99, 89–112 (1996)

    Article  Google Scholar 

  22. Belmudes, F., Ernst, D., Wehenkel, L.: Cross-entropy based rare-event simulation for the identification of dangerous events in power systems. In: Proceedings of the 10th International Conference on Probabilistic Methods Applied to Power Systems. PMAPS ’08, pp. 1–7 (2008)

  23. Celeste, F., Dambreville, F., Le Cadre, J.-P.: Optimal path planning using cross-entropy method. In: 2006 9th International Conference on Information Fusion, pp. 1–8 (2006)

  24. Zhang, Y., Ji, C., Malik, W., O’Brien, D., Edwards, D.: Cross-entropy optimisation of multiple-input multiple-output capacity by transmit antenna selection. IET Microwaves Antennas Propag. 1(6), 1131–1136 (2007)

    Article  Google Scholar 

  25. Kobilarov, M.: Cross-entropy randomized motion planning. In: Proceedings of Robotics: Science and Systems, Los Angeles, CA, USA (2011)

  26. Bodur, M.: An adaptive cross-entropytuning of the PID control for robot manipulators. In: Proceedings of the World Congress on Engineering, WCE 2007, pp. 93–98 (2007)

  27. Haber, R.E., del Toro, R.M., Gajate, A.: Optimal fuzzy control system using the cross-entropy method. A case study of a drilling process. Inf. Sci. 180, 2777–2792 (2010)

    Article  Google Scholar 

  28. Bradski, G.: Computer vision face tracking for use in a perceptual user interface. In: IEEE Workshop on Applications of Computer Vision, Princeton, NJ, pp. 214–219 (1998)

  29. Fukunaga, K., Hostetler, L.: The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Trans. Inf. Theory 21(1), 32–40 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mondragón, I., Olivares-Méndez, M., Campoy, P. Martínez, C., Mejias, L.: Unmanned aerial vehicles uavs attitude, height, motion estimation and control using visual systems. Auton. Robots 29, 17–34 (2010). doi:10.1007/s10514-010-9183-2

    Article  Google Scholar 

  31. Olivares-Mendez, M., Mondragon, I., Campoy, P., Martinez, C.: Fuzzy controller for UAV-landing task using 3d-position visual estimation. In: 2010 IEEE International Conference on Fuzzy Systems (FUZZ), pp. 1–8 (2010)

  32. Olivares-Mendez, M., Mellado, I., Campoy, P., Mondragon, I., Martinez, C.: A visual AGV-urban car using fuzzy control. In: 2011 IEEE International Conference on Automation, Robotics and Applicatios (ICARA) (2011)

  33. Rubinstein, R.Y., Kroese, D.P.: The Cross-Entropy Method: A Unified Approach To Combinatorial Optimization, Monte-Carlo Simulation (Information Science and Statistics). Springer, Secaucus (2004)

  34. Botev, Z., Kroese, D.P.: Global likelihood optimization via the cross-entropy method with an application to mixture models. In: Proceedings of the 36th Conference on Winter Simulation, pp. 529–535 (2004)

  35. Robot Operating System (ROS): [Online]. Available: http://ros.org/wiki/gazebo (2012)

  36. Starmac-ROS package. Hybrid Systems Laboratory, UC Berkeley (2012). [Online]. Available: http://www.ros.org/wiki/starmac-ros-pkg

  37. Ar.Drone Parrot (2010). [Online]. Available: http://ardrone.parrot.com

  38. Computer Vision Group-UPM (2012). [Online]. Available: http://www.vision4uav.eu

  39. Motion Capture System from VICON (2012). [Online]. Available: http://www.vicon.com

  40. Computer Vision Group-UPM. See and avoid fuzzy controller scaling factors optimized using cross-entropy (2012). [Online]. Available: http://vision4uav.eu/?q=researchline/SeeAndAvoidCE_SF

  41. Youtube Channel Computer Vision Group-UPM (2012). [Online]. Available: http://www.youtube.com/colibriprojectUAV

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel A. Olivares-Mendez.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Olivares-Mendez, M.A., Mejias, L., Campoy, P. et al. Cross-Entropy Optimization for Scaling Factors of a Fuzzy Controller: A See-and-Avoid Approach for Unmanned Aerial Systems. J Intell Robot Syst 69, 189–205 (2013). https://doi.org/10.1007/s10846-012-9791-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-012-9791-5

Keywords

  • UAV
  • UAS
  • Fuzzy logic
  • Fuzzy control
  • Cross-Entropy
  • Visual servoing
  • Computer vision
  • Sense and avoid
  • See and avoid
  • Optimization