Skip to main content
Log in

Design and Implementation of an Inverse Dynamics Controller for Uncertain Nonholonomic Robotic Systems

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper addresses the trajectory tracking control problem of nonholonomic robotic systems in the presence of modeling uncertainties. A tracking controller is proposed such that it combines the inverse dynamics control technique and an adaptive robust PID control strategy to preserve robustness to both parametric and nonparametric uncertainties. A SPR-Lypunov stability analysis demonstrates that tracking errors are uniformly ultimately bounded (UUB) and exponentially converge to a small ball containing the origin. The proposed inverse dynamics tracking controller is successfully applied to a nonholonomic wheeled mobile robot (WMR) and experimental results are presented to validate the effectiveness of the proposed controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Brockett, R.W.: Asymptotic stability and fedback stabilization. In: Brockett, R.W., Milman, R.S., Sussman H.J. (eds.) Differential Geometric Control Theory, pp. 181–191. Boston (1983)

  2. Sastry, S.S., Bodson, M.: Adaptive Control: Stability, Convergence and Robustness. Prentice-Hall, Englewood Cliffs, NJ (1989)

    MATH  Google Scholar 

  3. Campion, G., d’Andrea-Novel, B., Bastin, G.: Modeling and State Feedback Control of Nonholonomic Mechanical Systems. In: Proceedings of the 30th Conference on Decision and Control, IEEE, pp. 1184–1189. England (1991)

  4. Campion, G., d’Andrea-Novel, B., Bastin, G.: Controllability and state feedback stabilization of nonholonomic mechanical systems. In: de Wit, C.C. et al. (eds.) Lecture Notes in Control and Information Science, vol. 162, pp. 106–124. Springer, New York (1991)

    Google Scholar 

  5. Bloch, A.M., Reyhanoglu, M., McClamroch, N.H.: Control and stabiliztion of nonholonomic dynamic systems. IEEE Trans. Automat. Contr. 37(11), 1746–1757 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Yun, X., Kumar, V., Sarkar, N., Paljug, E.: Control of multiple arms with rolling constraints. In: Proceedings of the International Conference on Robotics and Automation, pp. 2193–2198 (1992)

  7. Lewis, F.L., Abdallah, C.T., Dawson, D.M.: Contol of Robot Manipulators. MacMillan, New York (1993)

    Google Scholar 

  8. Sarkar, N., Yun, X., Kumar, V.: Control of mechanical systems with rolling constraint: application to dynamic control of mobile robots. Int. J. Rob. Res. 13(1), 55–69 (1994)

    Article  Google Scholar 

  9. Kolmanovsky, I., McClamroch, N.H.: Developments in nonholonomic control problems. IEEE Control Syst. Mag. 15(6), 20–36 (1995)

    Article  Google Scholar 

  10. Walsh, G., Bushnell, L.G.: Stabilization of multiple input chanied form control systems. Syst. Control Lett. 25, 227–234 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. Qu, Z., Dawson, D.M.: Robust Tracking Control of Robot Manipulators. IEEE Press, Piscataway, NJ (1996)

    MATH  Google Scholar 

  12. Ioannou, P.A., Sun, J.: Robust Adaptive Control. Prentice-Hall, Englewood Cliffs, NJ (1996)

    MATH  Google Scholar 

  13. Yun, X., Yamamoto, Y.: Stability analysis of the internal dynamics of a wheeled mobile robot. J. Robot. Syst. 14, 697–709 (1997)

    Article  MATH  Google Scholar 

  14. Yun, X., Sarkar, N.: Unified formulation of robotic systems with holonomic and nonholonomic constraints. IEEE Trans. Robot. Autom. 14(4), 640–650 (1998)

    Article  Google Scholar 

  15. Kim, D.-H., Oh, J.-H.: Tracking Control of a two-wheeled mobile robot using input-output linearization. J. Control Eng. Pract. 7, 369–373 (1999)

    Article  Google Scholar 

  16. Dong, W., Xu, W.L., Huo, W.: Trajectory tracking control of dynamic non-holonomic systems with unknown dynamics. Int. J. Robust Nonlinear Control 9, 905–922 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jiang, Z.-P., Nijmeijer, H.: A recursive technique for tracking control of dynamic nonholonomic systems in chained form. IEEE Trans. Automat. Contr. 34(32), 265–279 (1999)

    Article  MathSciNet  Google Scholar 

  18. Dixon, W.E., Dawson, D.M.: Tracking and regulation control of a mobile robot system with kinematic disturbances: a variable structure-like approach. Trans. ASME J. Dyn. Syst. Measure. Control 122, 616–623 (2000)

    Article  Google Scholar 

  19. Dong, W., Xu, W.L.: Adaptive tracking control of uncertain nonholonomic dynamic system. IEEE Trans. Automat. Contr. 46(3), 450–454 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Oriolo, G., De Luca, A., Vendittelli, M.: WMR control via dynamic feedback linearization: design, implementation, and experimental validation. IEEE Trans. Control Syst. Technol. 10(6), 835–852 (2002)

    Article  Google Scholar 

  21. Oya, M., Su, C.-Y., Katoh, R.: Robust adaptive motion/force tracking control of uncertain nonholonomic mechanical systems. IEEE Trans. Robot. Autom. 19(1), 175–181 (2003)

    Article  Google Scholar 

  22. Coelho, P., Nunes, U.: Lie algebra application to mobile robot control: a tutorial. Robotica 21(5), 483–493 (2003)

    Article  Google Scholar 

  23. De La Cruz, C., Carelli, R.: Dynamic modeling and centralized formation control of mobile robots. In: Proceedings of thirty-second annual conference of the IEEE industrial electronics society, pp. 3880–3885. IECON, Paris (2006)

    Google Scholar 

  24. Martins, F.N., Celeste, W.C., Carelli, R., Filho, M.S., Filho, T.F.B.: An adaptive dynamic controller for autonomous mobile robot trajectory tracking. J. Control Eng. Pract. 16, 1354–1363 (2008)

    Article  Google Scholar 

  25. Shojaei, K., Tarakameh, A., Mohammad Shahri, A.: Adaptive trajectory tracking of WMRs based on feedback linearization technique. In: Proceedings of the International Conference on Mechatronics and Automation, IEEE, pp. 729–734. Changchun, China (2009)

    Google Scholar 

  26. Shojaei, K., Mohammad Shahri, A., Tarakameh, A.: Adaptive feedback linearizing control of nonholonomic wheeled mobile robots in presence of parametric and nonparametric uncertainties. Robot. Comput.-Integr. Manuf. 27, 194–204 (2011)

    Article  Google Scholar 

  27. Shojaei, K., Mohammad Shahri, A., Tarakameh, A., Tabibian, B.: Adaptive trajectory tracking control of a differential drive wheeled mobile robot. Robotica 29, 391–402 (2010)

    Article  Google Scholar 

  28. Park, B.S., Yoo, S.J., Park, J.B., Choi, Y.H.: A simple adaptive control approach for trajectory tracking of electricaslly driven nonholonomic mobile robots. IEEE Trans. Control Syst. Technol. 18(5), 1199–1206 (2010)

    Article  Google Scholar 

  29. Chwa, D.: Tracking control of differential-drive wheeled mobile robots using a backstepping-like feedback linearization. IEEE Trans. Syst. Man Cybern. 40(6), 1285–1295 (2010)

    Article  Google Scholar 

  30. Das, T., Kar, I.N., Chaudhury, S.: Simple neuron-based adaptive controller for a nonholonomic mobile robot including actuator dynamics. J. Neurocomput. 69, 2140–2151 (2006)

    Article  Google Scholar 

  31. Park, B.S., Yoo, S.J., Park, J.B., Coi, Y.H.: Adaptive ouput-feedback control for trajectory tracking of eletcrically driven non-holonomic mobile robots. J. IET Control Theor. Appl. 5(6), 830–838 (2010)

    Article  Google Scholar 

  32. Shojaei, K., Shahri, A.M.: Output feedback tracking control of uncertain non-holonomic wheeled mobile robots: a dynamic surface control approach. J. IET Control Theor. Appl. 6(2), 216–228 (2012)

    Google Scholar 

  33. Moustris, G.P., Tzafestas, S.G.: Switching fuzzy tracking control for mobile robots under curvature constraints. J. Control Eng. Pract. 19(1), 45–53 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khoshnam Shojaei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shojaei, K., Shahri, A.M. & Tabibian, B. Design and Implementation of an Inverse Dynamics Controller for Uncertain Nonholonomic Robotic Systems. J Intell Robot Syst 71, 65–83 (2013). https://doi.org/10.1007/s10846-012-9762-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-012-9762-x

Keywords

Navigation