Advertisement

Journal of Intelligent & Robotic Systems

, Volume 67, Issue 2, pp 101–116 | Cite as

A Humanoid Neck System Featuring Low Motion-Noise

  • Bingtuan GaoEmail author
  • Jing Xu
  • Jianguo Zhao
  • Ning Xi
  • Yantao Shen
  • Ruiguo Yang
Article

Abstract

This paper presents our recently developed humanoid neck system that can effectively mimic motion of human neck with very low motion noises. The features of low motion noises allows our system to work like a real human neck. Thus the level of acoustic noises from wearable equipments, such as donning respirators or chemical-resistant jackets, induced by human head motion can be simulated and investigated using such a system. Our low motion-noise humanoid head/neck system is based on the spring structure, which can generate 1 degree of freedom (DOF) jaw movement and 3DOF neck movement. To guarantee the low-noise feature, no noise-makers like gear and electro-driven parts are embedded in the head/neck structure. Instead, the motion is driven by seven polyester cables, and the actuators pulling the cables are sealed in a sound insulation box. Furthermore, statics analysis and motion control design of the system have been presented. Experimental results clearly show that the head/neck system can greatly mimic the motion of human head with an A-weighted noise level of 30 dB or below.

Keywords

Humanoid neck Cable-driven mechanism Motion-noise reduction Lateral bending 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    White, A.A., Panjabi, M.M.: Clinical Biomechanics of the Spine, 2nd edn., pp. 85–125, JB Lippincott, Philadelphian (1990)Google Scholar
  2. 2.
    Hirukawa, H., Kanehiroa, F., Kanekoa, K.: Humanoid robotics platforms developed in HRP. Robot. Auton. Syst. 48(4), 165–175 (2004)CrossRefGoogle Scholar
  3. 3.
    Sakagami, Y., Watanabe, R., Aoyama, C., Matsunaga, S., Higaki, N., Fujimura, K.: The intelligent ASIMO: system overview and integration. In: IEEE/RSJ International Conference on Intelligent Robots and System, pp. 2478–2483. Lausanne, Switzerland (2002)Google Scholar
  4. 4.
    Tadesse, Y., Subbarao, K., Priya, K.: Realizing a humanoid neck with serial chain four-bar mechanism. J. Intell. Mater. Syst. Struct. 21(12), 1169–1191 (2010)CrossRefGoogle Scholar
  5. 5.
    Park, I.-W., Kim, J.-Y., Cho, B.-K., Oh, J.-H.: Control hardware integration of a biped humanoid robot with an android head. Robot. Auton. Syst. 56(1), 95–103 (2008)CrossRefGoogle Scholar
  6. 6.
    Han, J.D., Zeng, S.Q., Tham, K.Y., Badgero, M., Weng, J.Y.: Dav: a humanoid robot platform for autonomous mental development. In: Proceedings of the 2nd International Conference on Development and Learning, pp. 73–81. Cambridge, USA (2002)Google Scholar
  7. 7.
    Beira, R., Lopes, M., Praca, M.: Design of the robot-cub (iCub) head. In: IEEE International Conference on Robotics and Automation, pp. 94–100. Orlando, USA (2006)Google Scholar
  8. 8.
    Miwa, H., Okuchi, T., Takanobu, H., Takanishi, A.: Development of a new human-like head robot WE-4. In: Proceedings of the 2002 IEEE/RSJ Intl. Conference on Intelligent Robots and Systems, pp. 2443–2448. EPFL, Lausanne, Switzerland (2002)Google Scholar
  9. 9.
    Albers, A., Brudniok, S., Ottnad, J., Sauter, C., Sedchaicham, K.: Upper body of a new humanoid robot-the design of ARMAR III. In: IEEE-RAS International Conference on Humanoid Robots, pp. 308–313. Genova, Italy (2006)Google Scholar
  10. 10.
    Asfour, T., Azad, P., Vahrenkamp, N., Regenstein, K., Bierbaum, A., Welke, K., Schroder, J., Dillmann, R.: Toward humanoid manipulation in human-centred environments. Robot. Auton. Syst. 56(1), 54–65 (2008)CrossRefGoogle Scholar
  11. 11.
    Carbone, G., Lim, H.-O., Takanishi, A., Ceccarelli, M.: Stiffness analysis of biped humanoid robot WABIAN-RIV. Mech. Mach. Theory 41(1), 17–40 (2006)zbMATHCrossRefGoogle Scholar
  12. 12.
    Hirth, J., Schmitz, N., Berns, K.: Emotional architecture for the humanoid robot head ROMAN. In: IEEE International Conference on Robotics and Automation, pp. 2150–2155. Roma, Italy (2007)Google Scholar
  13. 13.
    Brouwer, D.M., Bennik, J., Leideman, J.: Mechatronic design of a fast and long range 4 degree of freedom humanoid neck. In: IEEE International Conference on Robotics and Automation, pp. 574–579. Kobe, Japan (2009)CrossRefGoogle Scholar
  14. 14.
    Gao, B., Zhao, J., Xi, N., Xu, J.: Combined kinematic and static analysis of a cable-driven manipulator with a spring spine. In: IEEE International Conference on Robotics and Automation, pp. 2725–2730. Shanghai, China (2011)Google Scholar
  15. 15.
    Hashimoto, T., Hitramatsu, S., Tsuji, T., Kobayashi, H.: Development of the race robot SAYA for rich facial expressions. In: SICE-ICASE International Joint Conference, pp. 5423–5428. Busan, Korea (2006)Google Scholar
  16. 16.
    Nori, F., Jamone, L., Metta, G., Sandini, G.: Accurate control of a human-like tendon-driven neck. In: IEEE International Conference on Humanoid Robots, pp. 371–378. Pittsburgh, Pennsylvania, USA (2007)Google Scholar
  17. 17.
    Jamone, L., Fumagalli, M., Metta, G.: Machine-learning based control of a human-like tendon-driven neck. In: IEEE International Conference on Robotics and Automation, pp. 859–865. Anchorage, Alaska, USA (2010)Google Scholar
  18. 18.
    Su, H., Dickstein-Fischer, L., Harrington, K.: Cable-driven elastic parallel humanoid head with face tracking for autism spectrum disorder interventions. In: Proceedings of the IEEE EMBS, pp. 467–470. Buenos Aires, Argentina (2010)Google Scholar
  19. 19.
    Jones, B.A., Walker, I.D.: Kinematics for multisection continuum robots. IEEE Trans. Robotics 22(1), 43–57 (2006)CrossRefGoogle Scholar
  20. 20.
    Neppalli, S., Csencsits, M.A., Jones, B.A., Walker, I.D.: Closed-form inverse kinematics for continuum manipulators. Adv. Robot. 23(15), 2077–2091 (2009)CrossRefGoogle Scholar
  21. 21.
    Simaan, N., Taylor, R., Flint, P.: A dexterous system for laryngeal surgery. In: IEEE International Conference on Robotics and Automation, pp. 351–357. New Orleans, LA, USA (2004)Google Scholar
  22. 22.
    Xu, K., Simaan, N.: Analytic formulation for kinematics, statics and shape restoration of multi-backbone continuum robots via elliptic integrals. ASME J. Mech. Robot. 2(1), 011006-1-13 (2010)Google Scholar
  23. 23.
    Zhang, Z., Yang, G., Yeo, S.H.: Design optimization of a cable-driven two-DOF joint module with a flexible backbone. In: IEEE/ASME Advanced Intelligent Mechatronics Conference, pp. 385–390. Montreal, Canada (2010)Google Scholar
  24. 24.
    Timoshenko, S.: Theory of Elastic Stability. McGraw-Hill, New York (1936)Google Scholar
  25. 25.
    Frisch-Fay, R.: Flexible Bars. Butter Worths, Washington (1962)zbMATHGoogle Scholar
  26. 26.
    Gao, B., Xi, N., Shen, Y., Zhao, J., Yang, R.: Development of a low motion-noise humanoid neck: statics analysis and experimental validation. In: IEEE Internationla Conference on Robotics and Automation, pp. 1203–1208. Anchorage, Alaska, USA (2010)Google Scholar
  27. 27.
    Timoshenko, S., Young, D.H.: Advanced Dynamics. McGraw-Hill, New York (1948)Google Scholar
  28. 28.
    Panjabi, M.M.: Cervical spine kinematics and clinical instability. In: Clark, C.R. (ed.) The Cervical Spine, 4th edn., pp. 55–78. Lippincott, Philadelphian (2005)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Bingtuan Gao
    • 1
    Email author
  • Jing Xu
    • 2
  • Jianguo Zhao
    • 3
  • Ning Xi
    • 3
  • Yantao Shen
    • 4
  • Ruiguo Yang
    • 3
  1. 1.School of Electrical EngineeringSoutheast UniversityNanjingChina
  2. 2.Department of Precision Instruments and MechanologyTsinghua UniversityBeijingPeople’s Republic of China
  3. 3.Department of Electrical and Computer EngineeringMichigan State UniversityEast LansingUSA
  4. 4.Department of Electrical and Biomedical EngineeringUniversity of Nevada at RenoRenoUSA

Personalised recommendations