Skip to main content
Log in

Vector-Based Attitude Filter for Space Navigation

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper presents the design and performance evaluation of a novel integrated attitude filter with application to space navigation. The design is based directly on the sensor measurements as opposed to traditional solutions that resort to rotation parameterizations. The information provided by a low-cost star tracker is merged with the measurements of a triaxial rate gyro to provide accurate estimates of the attitude. The proposed multirate solution also includes the estimation of rate gyro bias and tuning procedures. Simulation and experimental results, including ground truth data for performance evaluation purposes, are shown that illustrate the attainable performance in the presence of realistic measurements provided by low-cost star trackers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bar-Itzhack, I., Oshman, Y.: Attitude determination from vector observations: quaternion estimation. IEEE Trans. Aerosp. Electron. Syst. 321(1), 128–136 (1985)

    Article  Google Scholar 

  2. Batista, P.: Low-cost sensor-based integrated attitude filter for space applications. In: Proceedings of the AIAA 2009 Guidance, Navigation and Control Conference and Exhibit (Finalist of the AIAA GNC Graduate Student Paper Competition). Chicago, USA (2009)

  3. Bortz, J.: A new mathematical formulation for strapdown inertial navigation. IEEE Trans. Aerosp. Electron. Syst. 7(1), 61–66 (1971)

    Article  Google Scholar 

  4. Bryson, M., Sukkarieh, S.: Vehicle model aided inertial navigation for a UAV using low-cost sensors. In: Proceedings of the 2004 Australasian Conference on Robotics and Automation. Canberra, Australia (2004)

  5. Campolo, D., Keller, F., Guglielmelli, E.: Inertial/magnetic sensors based orientation tracking on the group of rigid body rotations with application to wearable devices. In: Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems—IROS 2006, pp. 4762–4767. Beijing, China (2006)

  6. Chiang, Y., Chang, F., Wang, L., Jan, Y., Ting, L.: Data fusion of three attitude sensors. In: Proceedings of the 40th SICE Annual Conference, pp. 234–239. Nagoya, Japan (2001)

  7. Crassidis, J., Markley, F., Cheng, Y.: Survey of nonlinear attitude estimation methods. J. Guid. Control Dyn. 30(1), 12–28 (2007)

    Article  Google Scholar 

  8. Dussy, S., Durrant, D., Moy, T.: MEMS gyro for space applications—overview of European activities. In: Proceedings of the AIAA Guidance, Navigation and Control Conference and Exhibit. San Francisco, CA, USA (2005)

  9. Eisenman, A., Liebe, C.: The advancing state-of-the-art in second generation star trackers. In: Proceedings of the 1998 IEEE Aerospace Conference, vol. 1, pp. 111–118. Aspen, CO, USA (1998)

  10. Farrell, J.: Attitude determination by Kalman filter. Automatica 6(5), 419–430 (1970)

    Article  MATH  Google Scholar 

  11. Farrell, J., Stuelpnagel, J.: A least squares estimate of satellite attitude. SIAM Rev. 8(3), 384–386 (1966)

    Article  Google Scholar 

  12. Franklin, G., Powell, J., Workman, M.: Digital Control of Dynamic Systems, 3rd edn. Addison Wesley (1998)

  13. Gelb, A.: Applied Optimal Filtering. MIT Press (1974)

  14. Hayward, R., Gebre-Egziabher, D., Schwall, M., Powell, J., Wilson, J.: Inertially aided GPS based attitude heading reference system (AHRS) for general aviation aircraft. In: Proceedings of the ION GPS’97. Kansas, MO, USA (1997)

  15. Ideal Aerosmith, Inc.: 2103HT multi-axis table data sheet, rev C. http://www.ideal-aerosmith.com/ (2006)

  16. Kalman, R., Bucy, R.: New results in linear filtering and prediction theory. Trans. ASME—J. Basic Eng. Ser. D 83(3), 95–108 (1961)

    MathSciNet  Google Scholar 

  17. Lam, Q., Crassidis, J.: Evaluation of a multiple model adaptive estimation scheme for space vehicle’s enhanced navigation solution. In: Proceedings of the AIAA Guidance, Navigation and Control Conference and Exhibit, Hilton Head, SC, USA (2007)

  18. Lefferts, E., Markley, F., Shuster, M.: Kalman filtering for spacecraft attitude estimation. J. Guid. Control Dyn. 5(5), 417–429 (1982)

    Article  Google Scholar 

  19. Liang, X., Zhang, J., Xia, X.: Adaptive synchronization for generalized Lorenz systems. IEEE Trans. Automat. Contr. 53(7), 1740–1746 (2008)

    Article  MathSciNet  Google Scholar 

  20. Liebe, C.: Accuracy performance of star trackers—a tutorial. IEEE Trans. Aerosp. Electron. Syst. 38(2), 587–599 (2002)

    Article  Google Scholar 

  21. Lippiello, V., Siciliano, B., Villani, L.: Adaptive extended Kalman filtering for visual motion estimation of 3D objects. Control Eng. Pract. 15(1), 123–134 (2007)

    Article  Google Scholar 

  22. Mahony, R., Hamel, T., Pflimlin, J.M.: Nonlinear complementary filters on the special orthogonal group. IEEE Trans. Automat. Contr. 53(5), 1203–1218 (2008)

    Article  MathSciNet  Google Scholar 

  23. Markley, F., Mortari, D.: How to estimate attitude from vector observations. In: Proceedings of the AAS/AIAA Astrodynamics Specialist Conference, vol. 103(3), pp. 1979–1996 (1999)

  24. MEMSENSE: NANO IMU product specification user’s guide, document number PSD-0822, rev. A. http://www.memsense.com (2009)

  25. Metni, N., Pflimlin, J.M., Hamel, T., Soueres, P.: Attitude and gyro bias estimation for a VTOL UAV. Control Eng. Pract. 14(12), 1511–1520 (2006)

    Article  Google Scholar 

  26. Rao, G., Alex, T., Bhat, M.: Incremental-angle and angular velocity estimation using a star sensor. J. Guid. Control Dyn. 25(3), 433–441 (2002)

    Article  Google Scholar 

  27. Rehbinder, H., Ghosh, B.: Pose estimation using line-based dynamic vision and inertial sensors. IEEE Trans. Automat. Contr. 48(2), 186–199 (2003)

    Article  MathSciNet  Google Scholar 

  28. Son-Goo, K., Crassidis, J., Cheng, Y., Fosburyx, A.: Kalman filtering for relative spacecraft attitude and position estimation. J. Guid. Control Dyn. 30(1), 133–143 (2007)

    Article  Google Scholar 

  29. Tayebi, A., McGilvray, S., Roberts, A., Moallem, M.: Attitude estimation and stabilization of a rigid body using low-cost sensors. In: Proceedings of the 46th IEEE Conference on Decision and Control, pp. 6424 –6429. New Orleans, USA (2007)

  30. Thienel, J., Sanner, R.: A coupled nonlinear spacecraft attitude controller and observer with an unknown constant gyro bias and gyro noise. IEEE Trans. Automat. Contr. 48(11), 2011–2015 (2003)

    Article  MathSciNet  Google Scholar 

  31. Vasconcelos, J., Cunha, R., Silvestre, C., Oliveira, P.: A nonlinear position and attitude observer on SE(3) using landmark measurements. Syst. Control. Lett. 59(3–4), 155–166 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Vasconcelos, J., Silvestre, C., Oliveira, P., Batista, P., Cardeira, B.: Discrete time-varying attitude complementary filter. In: Proceedings of the 2009 American Control Conference, pp. 4056–4061. Saint Louis, MO, USA (2009)

  33. Čelikovský, S., Chen, G.: Secure synchronization of a class of chaotic systems from a nonlinear observer approach. IEEE Trans. Automat. Contr. 50(1), 76–82 (2005)

    Article  Google Scholar 

  34. Wahba, G.: A least squares estimate of spacecraft attitude. SIAM Rev. 7(3), 409 (1965)

    Article  Google Scholar 

  35. Wang, C., Lachapelle, G., Cannon, M.: Development of an integrated low-cost GPS/rate gyro system for attitude determination. J. Navig. 56(1), 85–101 (2004)

    Article  Google Scholar 

  36. Wu, A., Hein, D.: Stellar inertial attitude determination for LEO spacecraft. In: Proceedings of the 35th IEEE Conference on Decision and Control, vol. 3, pp. 3236–3244. Kobe, Japan (1996)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Batista.

Additional information

This work was partially supported by Fundação para a Ciência e a Tecnologia (ISR/IST plurianual funding) through the PIDDAC Program funds, by the project PTDC/MAR/64546/2006 - OBSERVFLY of the FCT, and by the EU Project TRIDENT (Contract No. 248497).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Batista, P., Silvestre, C. & Oliveira, P. Vector-Based Attitude Filter for Space Navigation. J Intell Robot Syst 64, 221–243 (2011). https://doi.org/10.1007/s10846-010-9528-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-010-9528-2

Keywords

Navigation