Journal of Intelligent & Robotic Systems

, Volume 63, Issue 1, pp 51–73 | Cite as

A Dynamic-compensation Approach to Impedance Control of Robot Manipulators

  • Isela Bonilla
  • Fernando Reyes
  • Marco Mendoza
  • Emilio J. González-Galván
Article

Abstract

This paper presents an impedance–control strategy with dynamic compensation for interaction control of robot manipulators. The proposed impedance controller has been developed considering that the equilibrium point of the closed-loop system, composed by the combination of the controller and the full nonlinear robot dynamics is, locally, asymptotically stable in agreement with Lyapunov’s direct method. The performance of the proposed controller is verified through simulation and experimental results obtained from the implementation of an interaction task involving a two degree-of-freedom, direct-drive robot.

Keywords

Impedance control Interaction task Lyapunov stability Robot manipulator 

Mathematics Subject Classifications (2010)

MSC 93D05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kazerooni, H., Sheridan, T.B., Houpt, P.K.: Robust compliant motion for manipulators: parts I–II. IEEE J. Robot. Autom. 2, 83–105 (1986)Google Scholar
  2. 2.
    Seraji, H., Colbaugh, R.: Force tracking in impedance control. Int. J. Rob. Res. 16(1), 97–117 (1997)CrossRefGoogle Scholar
  3. 3.
    Raibert, M., Craig, J.: Hybrid position/force control of manipulators. ASME J. Dyn. Syst. Meas. Control 102, 126–133 (1981)CrossRefGoogle Scholar
  4. 4.
    Khatib, O.: A unified approach for motion and force control of robot manipulators: the operational space formulation. IEEE J. Robot. Autom. 3, 43–53 (1987)CrossRefGoogle Scholar
  5. 5.
    Hogan, N.: Impedance control: an approach to manipulation: part I—theory, part II—Implementation and part III—applications. ASME J. Dyn. Syst. Meas. Control 107, 1–24 (1985)MATHCrossRefGoogle Scholar
  6. 6.
    Kazerooni, H.: On the robot compliant motion control. ASME J. Dyn. Syst. Meas. Control 111, 416–425 (1989)MATHCrossRefGoogle Scholar
  7. 7.
    McCormick, W., Schwartz, H.: An investigation of impedance control for robot manipulators. Int. J. Rob. Res. 12(5), 473–489 (1993)CrossRefGoogle Scholar
  8. 8.
    Patarinski, S.P., Botev, R.G.: Robot force control: a review. Mechatronics 3(4), 377–398 (1993)CrossRefGoogle Scholar
  9. 9.
    Whitney, D.: Historical perspective and state of the art in robot force control. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 262–268 (1985)Google Scholar
  10. 10.
    Kazerooni, H.: Robust nonlinear impedance control for robot manipulators. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 741–750 (1987)Google Scholar
  11. 11.
    Anderson, R., Spong, M.: Hybrid impedance control of robotic manipulators. IEEE J. Robot. Autom. 4(5), 549–556 (1988)CrossRefGoogle Scholar
  12. 12.
    González, J., Widmann, G.: A force commanded impedance control scheme for robots with hard nonlinearities. IEEE Trans. Control Syst. Technol. 3(4), 398–408 (1995)CrossRefGoogle Scholar
  13. 13.
    Carelli, R., Kelly, R.: An adaptive impedance/force controller for robot manipulators. IEEE Trans. Autom. Contr. 36(8), 967–971 (1991)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Lu, W., Meng, Q.H.: Impedance control with adaptation for robotic manipulations. IEEE Trans. Robot. Autom. 7(3), 408–415 (1991)CrossRefGoogle Scholar
  15. 15.
    Jung, S., Hsia, T., Bonitz, R.: Force tracking impedance control of robot manipulators under unknown environment. IEEE Trans. Control Syst. Technol. 12(3), 474–483 (2004)CrossRefGoogle Scholar
  16. 16.
    Singh, S., Popa, D.: An analysis of some fundamental problems in adaptive control of force and impedance behavior: theory and experiments. IEEE Trans. Robot. Autom. 11(6), 912–921 (1995)CrossRefGoogle Scholar
  17. 17.
    Ferretti, G., Magnani, G., Rocco, P.: Impedance control for elastic joints industrial manipulators. IEEE Trans. Robot. Autom. 20(3), 488–498 (2004)CrossRefGoogle Scholar
  18. 18.
    Lippiello, V., Siciliano, B., Villani, L.: Robot interaction control using force and vision. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1470–1475 (2006)Google Scholar
  19. 19.
    Lippiello, V., Siciliano, B., Villani, L.: A position-based visual impedance control for robot manipulators. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 2068–2073. Roma, Italy (2007)Google Scholar
  20. 20.
    Lippiello, V., Siciliano, B., Villani, L.: Robot force/position control with force and visual feedback. In: Proceedings of 9th European Control Conference, pp. 3790–3795. Kos, Greece (2007)Google Scholar
  21. 21.
    Lippiello, V., Siciliano, B., Villani, L.: A framework for force and visual control of robot manipulators. In: 13th International Symposium of Robotics Research. Hiroshima, Japan (2007)Google Scholar
  22. 22.
    Hoon Kang, S., Jin, M., Hun Chang, P.: A solution to the accuracy/robustness dilemma in impedance control. IEEE/ASME Trans. Mechatron. 14(3), 282–294 (2009)CrossRefGoogle Scholar
  23. 23.
    Kelly, R., Santibáñez, V., Reyes, F.: On saturated-proportional derivative feedback with adaptive gravity compensation of robot manipulators. Int. J. Adapt. Control Signal Process. 10, 465–479 (1996)MATHCrossRefGoogle Scholar
  24. 24.
    Spong, M.W., Vidyasagar, M.: Robots Dynamics and Control. Wiley, New York (1989)Google Scholar
  25. 25.
    Takegaki, M., Arimoto, S.: A new feedback method for dynamic control of manipulators. ASME J. Dyn. Syst. Meas. Control 102, 119–125 (1981)CrossRefGoogle Scholar
  26. 26.
    Canudas, C., Siciliano, B., Bastin, G.: Theory of robot control. Springer (1996)Google Scholar
  27. 27.
    Colbaugh, R., Seraji, H., Glass, K.: Direct adaptive impedance control of robot manipulators. J. Robot. Syst. (Wiley) 10, 217–248 (1993)MATHCrossRefGoogle Scholar
  28. 28.
    Lawrence, D.: Impedance control stability in common implementations. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 1185–1190 (1988)Google Scholar
  29. 29.
    Sciavicco, L., Siciliano, B.: Modeling and Control of Robot Manipulators. McGraw-Hill, New York (1996)Google Scholar
  30. 30.
    Chiaverini, S., Siciliano, B., Villani, L.: A survey of robot interaction control schemes with experimental comparison. IEEE/ASME Trans. Mechatron. 4, 273–285 (1999)CrossRefGoogle Scholar
  31. 31.
    Reyes, F., Kelly, R.: Experimental evaluation of identification schemes on a direct drive robot. Robotica 15, 563–571. Cambridge University Press (1997)CrossRefGoogle Scholar
  32. 32.
    Pagilla, P.R.: Control of contact problem in constrained Euler-Lagrange systems. IEEE Trans. Automat. Contr. 46(10), 1595–1599 (2001)MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Tarn, T.J., Wu, Y., Xi, N., Isidori, A.: Force regulation and contact transition control. IEEE Control Syst. 16(1), 32–40 (1996)CrossRefGoogle Scholar
  34. 34.
    Mills, J.K., Lokhorst, D.M.: Stability and control of robotic manipulators during contact/noncontact task transition. IEEE Trans. Robot. Autom. 9(3), 335–345 (1993)CrossRefGoogle Scholar
  35. 35.
    Siciliano B.: Robot control. In: Samad, T. (ed.) Perspectives in Control Engineering: Technologies, Applications, and New Directions, pp. 442–461. IEEE Press, Piscataway (2000)Google Scholar
  36. 36.
    Canudas, C., Noel, P., Aubin, A., Brogliato, B.: Adaptive friction compensation in robot manipulators: low velocities. Int. J. Rob. Res. 10(3), 189–199 (1991)CrossRefGoogle Scholar
  37. 37.
    Armstrong-Hoélouvry, B., Neevel, D., Kusik, T.: New results in NPID control: tracking, integral control, friction compensation and experimental results. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 837–842 (1999)Google Scholar
  38. 38.
    Horn, R., Johnson, C.: Matrix Analysis. Cambridge University Press, New York (1985)MATHGoogle Scholar
  39. 39.
    Khalil, H.K.: Nonlinear Systems. Prentice Hall, Upper Saddle River (2002)MATHGoogle Scholar
  40. 40.
    Kelly, R., Santibáñez, V., Loría, A.: Control of Robot Manipulators in Joint Space. Springer, London (2005)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Isela Bonilla
    • 1
  • Fernando Reyes
    • 2
  • Marco Mendoza
    • 1
  • Emilio J. González-Galván
    • 1
  1. 1.Centro de Investigación y Estudios de Posgrado, Facultad de IngenieríaUniversidad Autónoma de San Luis PotosíSan Luis Potosí, S.L.P.México
  2. 2.Grupo de Robótica, Facultad de Ciencias de la ElectrónicaBenemérita Universidad Autónoma de PueblaCol. San ManuelMéxico

Personalised recommendations