Journal of Intelligent & Robotic Systems

, Volume 59, Issue 2, pp 103–125 | Cite as

Real-Time Warning System for Driver Drowsiness Detection Using Visual Information

  • Marco Javier Flores
  • José María ArmingolEmail author
  • Arturo de la Escalera


Traffic accidents due to human errors cause many deaths and injuries around the world. To help in reducing this fatality, in this research, a new module for Advanced Driver Assistance System (ADAS) for automatic driver drowsiness detection based on visual information and Artificial Intelligence is presented. The aim of this system is to locate, to track and to analyze the face and the eyes to compute a drowsiness index, working under varying light conditions and in real time. Examples of different images of drivers taken in a real vehicle are shown to validate the algorithm.


Driver’s drowsiness Neural networks Support vector machine Gabor filter Artificial intelligence ADAS Computer vision 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Armingol, J.M., de la Escalera, A., Hilario, C., Collado, J., Carrasco, J., Flores, M., Pastor, J., Rodriguez, F.: IVVI: intelligent vehicle based on visual information. Robot. Auton. Syst. 55, 904–916 (2007). doi: 10.1016/j.robot.2007.09.004 CrossRefGoogle Scholar
  2. 2.
    Bergasa, L., Nuevo, J., Sotelo, M., Vazquez, M.: Real time system for monitoring driver vigilance. In: IEEE Intelligent Vehicles Symposium, Parma, 14–17 June 2004Google Scholar
  3. 3.
    Brookshear, J.G.: Theory of Computation: Formal Languages, Automata and Complexity. Addison Wesley Iberoamericana, Reading (1993)Google Scholar
  4. 4.
    Brandt, T., Stemmer, R., Mertsching, B., Rakotomirainy, A.: Affordable visual driver monitoring system for fatigue and monotony. IEEE Int. Conf. Syst. Man Cybern. 7, 6451–6456 (2004)Google Scholar
  5. 5.
    Branzan, A., Widsten, B., Wang, T., Lan, J., Mah, J.: A computer vision-based system for real-time detection of sleep onset in fatigued drivers. In: IEEE Intelligent Vehicles Symposium, pp. 25–30 (2008)Google Scholar
  6. 6.
    Chang, C., Lin, C.: LIBSVM: a library for support vector machine (2001).
  7. 7.
    Chen, Y.W., Kubo, K.: A robust eye detection and tracking technique using Gabor filters. In: Third International Conference on Intelligent Information Hiding and Multimedia Signal Processing, IEEE, vol. 1, pp. 109–112 (2007)Google Scholar
  8. 8.
    Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and other Kernel-Based Learning Methods. Cambridge University Press, Cambridge (2000)Google Scholar
  9. 9.
    Daugman, J.G.: Uncertainty relation for resolution in space, spatial frequency and orientation optimized by two-dimensional cortial filters. J. Opt. Soc. Am. 2(7), 1160–1169 (1985)CrossRefGoogle Scholar
  10. 10.
    D’Orazio, T., Leo, M., Distante, A.: Eye detection in faces images for a driver vigilante system. IEEE Intelligent Vehicles Symposium University of Parma, Italy, 14–17 June (2004)Google Scholar
  11. 11.
    Dong, W., Wu, X.: Driver fatigue detection based on the distance of eyelid. In: IEEE Int. Workshop VLSI Design & Video Tech., Suzhou, China (2005)Google Scholar
  12. 12.
    Fletcher, L., Petersson, L., Zelinsky, A.: Driver assistance systems based on vision in and out of vehicles. In: IEEE Proceedings of Intelligent Vehicles Symposium, pp. 322–327 (2003)Google Scholar
  13. 13.
    Gejgus, P., Sparka, M.: Face Tracking in Color Video Sequences. The Association for Computing Machinery Inc., New York (2003)Google Scholar
  14. 14.
    Grace, R.: Drowsy driver monitor and warning system. International Driving Symposium on Human Factors in Driver Assessment, Training and Vehicle Design (2001)Google Scholar
  15. 15.
    Guyon, I., Gunn, S., Nikravesh, M., Zadeh, L.A.: Feature Extraction: Foundations and Applications. Springer, Berlin (2006)zbMATHCrossRefGoogle Scholar
  16. 16.
    Hagenmeyer, L.: Development of a multimodal, universal human–machine-interface for hypovigilance-management-systems. Ph.D. thesis, University of Stuttgart (2007)Google Scholar
  17. 17.
    Horng, W., Chen, C., Chang, Y.: Driver fatigue detection based on eye tracking and dynamic template matching. In: Proceedings of the IEEE International Conference on Networking, Sensing & Control (2004)Google Scholar
  18. 18.
    Isard, M., Blake, A.: Condensation: conditional density propagation for visual tracking. Int. J. Comput. Vis. 29(1), 5–28 (1998). doi: 10.1023/A:1008078328650 CrossRefGoogle Scholar
  19. 19.
    Isard, M.A.: Visual motion analysis by probabilistic propagation of conditional density. Ph.D. thesis, Oxford University (1998)Google Scholar
  20. 20.
    Jafar, I., Ying, H.: A new method for image contrast enhancement based on automatic specification of local histograms. IJCSNS Int. J. Computer Sci. Netw. Secur. 7(7), 1–10 (2007)Google Scholar
  21. 21.
    Ji, Q., Zhu, Z., Lan, P.: Real time nonintrusive monitoring and prediction of driver fatigue. IEEE Trans. Veh. Technol. 53(4), 1052–1068 (2004). doi: 10.1109/TVT.2004.830974 CrossRefGoogle Scholar
  22. 22.
    Ji, Q., Yang, X.: Real-time eye, gaze, and face pose tracking for monitoring driver vigilance. Real-Time Imaging 8, 357–377 (2002)zbMATHCrossRefGoogle Scholar
  23. 23.
    Liu, C.: Gabor-based kernel PCA with fractional power polynomial models for face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 26(5), 572–581 (2004)CrossRefGoogle Scholar
  24. 24.
    Longhurst G.: Understanding Driver Visual Behaviour. Seeing Machine Pty Limited, Acton (2002)Google Scholar
  25. 25.
    Looney, C.G.: Pattern Recognition Using Neural Networks, Theory and Algorithms for Engineers and Scientists. Oxford University Press, Oxford (1997)Google Scholar
  26. 26.
    McLachlan, G.J.: The EM Algorithm and Extensions. Wiley, New York (1997)zbMATHGoogle Scholar
  27. 27.
    Mujtaba I.M.: Application of Neural Networks and Other Learning Technologies in Process Engineering. Imperial College Press, London (2001)CrossRefGoogle Scholar
  28. 28.
    NHTSA: evaluation of techniques for ocular measurement as an index of fatigue and the basis for alertness management. Final report DOT HS 808762, National Highway Traffic Safety Administration, Virginia 22161, USA (1998)Google Scholar
  29. 29.
    Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9, 62–66 (1979). doi: 10.1109/TSMC.1979.4310076 CrossRefGoogle Scholar
  30. 30.
    Parker, J.R.: Practical Computer Vision Using C. Wiley, New York (1994)Google Scholar
  31. 31.
    Tian, Z., Qin, H.: Real-time driver’s eye state detection. In: IEEE International Conference on Vehicular Electronics and Safety, pp. 285–289 (2005)Google Scholar
  32. 32.
    Satake, J., Shakunaga, T.: Multiple target tracking by appearance-based condensation tracker using structure information. In: Proceedings of the 17th International Conference on Patter Recognition (ICPR’04), vol. 3, pp. 294–297 (2004)Google Scholar
  33. 33.
    Swingler, K.: Applying Neural Networks: A Practical Guide. Academic, New York (1996)Google Scholar
  34. 34.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Conference on Computer Vision and Pattern Recognition (2001)Google Scholar
  35. 35.
    Wu, Y., Liu, H., Zha, H.: A new method of detecting human eyelids based on deformable templates. In: IEEE International Conference on Systems, Man and Cybernetics, pp. 604–609 (2004)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Marco Javier Flores
    • 1
  • José María Armingol
    • 1
    Email author
  • Arturo de la Escalera
    • 1
  1. 1.Intelligent Systems LaboratoryUniversidad Carlos III de MadridLeganésSpain

Personalised recommendations