Skip to main content
Log in

Simple and Robust Attainment of Transparency Based on Two-Channel Control Architectures Using Time-Delay Control

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

This paper investigates simple and robust transparency-attainable control architectures for bilateral teleoperation. The strength of two-channel control architectures and time-delay control are exploited. First, two types of transparency-attainable two-channel control architecture are derived. In spite of the simplicity of using two communication channels, these architectures have problems in terms of implementation; they are not simple enough and not robust to uncertainties, such as errors in modeling the plant and force sensor noise. To solve the problems, time-delay control laws for two-channel control architecture are proposed. The model-independent, nonlinear, and robust characteristics of time-delay control mitigate the problems related to complexity and robustness. Finally, the proposed control laws are applied to experiments using a 2-DOF master–slave system. The experimental results confirm the validity of the theoretical approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lawrence, D.A.: Stability and transparency in bilateral teleoperation. IEEE Trans. Robot. Autom. 9(5), 624–637 (1993). doi:10.1109/70.258054

    Article  MathSciNet  Google Scholar 

  2. Hokayem, P.F., Spong, M.W.: Bilateral teleoperation: an historical survey. Automatica 42(12), 2035–2057 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Hashtrudi-Zaad, K., Salcudean, S.E.: Analysis of control architectures for teleoperation systems with impedance/admittance master and slave manipulators. Int. J. Rob. Res. 20(6), 419–445 (2001). doi:10.1177/02783640122067471

    Article  Google Scholar 

  4. Yokokohji, Y., Yoshikawa, T.: Bilateral control of master–slave manipulators for ideal kinesthetic coupling-formulation and experiment. IEEE Trans. Robot. Autom. 10(5), 605–620 (1994). doi:10.1109/70.326566

    Article  Google Scholar 

  5. Hashtrudi-Zaad, K., Salcudean, S.E.: Transparency in time-delayed systems and the effect of local force feedback for transparent teleoperation. IEEE Trans. Robot. Autom. 18(1), 108–114 (2002). doi:10.1109/70.988981

    Article  Google Scholar 

  6. Reboulet, C., Plihon, Y., Briere, Y.: Interest of the dual hybrid control scheme for teloperation with time delays. In: Experimental Robotics IV, the 4th Int. Symposium on Experimental Robotics, pp. 498–506. Springer, New York (1995)

    Google Scholar 

  7. Salcudean, S.E., Hashtrudi-Zaad, K., Tafazoli, S., DiMaio, S.P., Reboulet, C.: Bilateral matched-impedance teleoperation with application to excavator control. IEEE Control Syst. Mag. 19(6), 29–37 (1999). doi:10.1109/37.806913

    Article  Google Scholar 

  8. Fite, K.B., Speich, J.E., Goldfarb, M.: Transparency and stability robustness in two-channel bilateral telemanipulation. ASME J. Dyn. Syst. Meas. Control 123, 400–407 (2001). doi:10.1115/1.1387018

    Article  Google Scholar 

  9. Fite, K.B., Shao, L., Goldfarb, M.: Loop-shaping for transparency and stability robustness in bilateral telemanipulation. IEEE Trans. Robot. Autom. 20(3), 620–624 (2004). doi:10.1109/TRA.2004.825474

    Article  Google Scholar 

  10. Anderson, R.J., Spong, M.W.: Bilateral control of teleoperators with time delay. IEEE Trans. Automat. Contr. 34(5), 494–501 (1989)

    Article  MathSciNet  Google Scholar 

  11. Imaida, T., Yokokohji, Y., Doi, T., Oda, M., Yoshikawa, T.: Ground–space bilateral teleoperation of ETS-VII Robot Arm by direct bilateral coupling under 7-s time delay condition. IEEE Trans. Robot. Autom. 20(3), 499–511 (2004). doi:10.1109/TRA.2004.825271

    Article  Google Scholar 

  12. Baier, H., Schmidt, G.: Transparency and stability of bilateral kinesthetic teleoperation with time-delayed communication. J. Intell. Robot. Syst. 40, 1–22 (2004). doi:10.1023/B:JINT.0000034338.53641.d0

    Article  Google Scholar 

  13. Hsia, T.C., Lasky, T.A., Guo, Z.: Robust independent joint controller design for industrial robot manipulators. IEEE Trans. Ind. Electron. 38(1), 21–25 (1991). doi:10.1109/41.103479

    Article  Google Scholar 

  14. Chang, P.H., Park, B.S., Park, K.C.: An experimental study on improving hybrid position/force control of a robot using time delay control. Mechatronics 6(8), 915–931 (1996). doi:10.1016/S0957-4158(96)00028-1

    Article  Google Scholar 

  15. Brooks, T.L.: Telerobotic response requirements. In: IEEE Int. Conference on Systems, Man and Cybernetics, pp. 113–120 (1990)

  16. Kron, A., Schmidt, G.: Stability and performance analysis of kinesthetic control architectures for bimanual telepresence systems. J. Intell. Robot. Syst. 46, 1–26 (2006). doi:10.1007/s10846-006-9032-x

    Article  Google Scholar 

  17. Stanczyk, B., Peer, A., Buss, M.: Development of a high-performance haptic telemanipulation system with dissimilar kinematics. Adv. Robot. 20(46), 1303–1320 (2006). doi:10.1163/156855306778792461

    Article  Google Scholar 

  18. Hirche, S., Hinterseer, P., Steinbach, E., Buss, M.: Transparent data reduction in networked telepresence and teleaction systems. Part I: communication without time delay. Presence 16(5), 523–531 (2007). doi:10.1162/pres.16.5.523

    Article  Google Scholar 

  19. Ferre, M., Barrio, J., Melchiorri, C., Bogado, J.M., Castedo, P.L., Ibarra, J.M.: Experimental results on bilateral control using an industrial telemanipulator. In: Ferre, M., et al. (eds.) Advances in Telerobotics. STAR, vol. 31, pp. 177–190. Springer, Heidelberg (2007)

    Google Scholar 

  20. Hannaford, B.: A design framework for teleoperators with kinesthetic feedback. IEEE Trans. Robot. Autom. 5(4), 426–434 (1989). doi:10.1109/70.88057

    Article  Google Scholar 

  21. Aliaga, I., Rubio, A., Sanchez, E.: Experimental quantitative comparison of different control architectures for master–slave teleoperation. IEEE Trans. Control Syst. Technol. 12(1), 2–11 (2004). doi:10.1109/TCST.2003.819586

    Article  Google Scholar 

  22. Craig, J.J.: Introduction to Robotics: Analysis and Control, 2nd edn. Addison-Wesley, Reading (1989)

    Google Scholar 

  23. Jin, M., Kang, S.H., Chang, P.H.: Robust compliant motion control of robot with nonlinear friction using time delay estimation. IEEE Trans. Ind. Electron. 55(1), 258–269 (2008). doi:10.1109/TIE.2007.906132

    Article  Google Scholar 

  24. Jung, J.H., Chang, P.H., Kwon, O.-S.: A new stability analysis of time delay control for input/output linearizable plants. In: American Control Conference, pp. 4972–4979 (2004)

  25. Savitzky, A., Golay, M.J.E.: Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36, 1627–1639 (1964). doi:10.1021/ac60214a047

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonghyun Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J., Park, HS. & Chang, P.H. Simple and Robust Attainment of Transparency Based on Two-Channel Control Architectures Using Time-Delay Control. J Intell Robot Syst 58, 309–337 (2010). https://doi.org/10.1007/s10846-009-9376-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-009-9376-0

Keywords

Navigation