Skip to main content
Log in

Multi-UAV Simulator Utilizing X-Plane

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

This paper describes the development of a simulator for multiple Unmanned Aerial Vehicles (UAVs) utilizing the commercially available simulator X-Plane and Matlab. Coordinated control of unmanned systems is currently being researched for a wide range of applications, including search and rescue, convoy protection, and building clearing to name a few. Although coordination and control of Unmanned Ground Vehicles (UGVs) has been a heavily researched area, the extension towards controlling multiple UAVs has seen minimal attention. This lack of development is due to numerous issues including the difficulty in realistically modeling and simulating multiple UAVs. This work attempts to overcome these limitations by creating an environment that can simultaneously simulate multiple air vehicles as well as provide state data and control input for the individual vehicles using a heavily developed and commercially available flight simulator (X-Plane). This framework will allow researchers to study multi-UAV control algorithms using realistic unmanned and manned aircraft models in real-world modeled environments. Validation of the system’s ability is shown through the demonstration of formation control algorithms implemented on four UAV helicopters with formation and navigation controllers built in Matlab/Simulink.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Baldor, L.C.: U.S. use of UAVs in Iraq surges. In: Prompting Turf War, vol. 2009 (2007)

  2. Cook, C.: Perspectives on Acquisition, Test, and Early Fielding of UAV Systems. Department of Operational Test and Evaluation (2008)

  3. Kim, D.-M., Kim, D., Kim, J., Kim, N., Suk, J.: Development of near-real-time simulation environment for multiple UAVs. In: International Conference on Control, Automation and Systems, Seoul, Korea (2007)

  4. Rasmussen, S.J., Chandler, P.R., Veridian, W.: MultiUAV: a multiple UAV simulation for investigation of cooperative control (2002)

  5. Goktogan, A.H., Nettleton, E., Ridley, M., Sukkarieh, S.: Real time multi-UAV simulator. In: IEEE International Conference on Robotics and Automation (2003)

  6. Beer, B.D., Lewis, M.: Lightweight UAV simulation for use in multi-agent human-in-the-loop experiments. In: Proceedings of the European Concurrent Engineering Conference, EUROSIS, pp. 51–56 (2007)

  7. Xu, D., Borse, P., Grigsby, K., Nygard, K.E.: A petri net based software architecture for UAV simulation. In: Proceedings of Software Engineering Research and Practice (SERP04), pp. 227–232 (2004)

  8. Ali, K., Carter, L.: Miniature-autopilot evaluation system. J. Comput. Sci. 4, 30–35 (2008)

    Article  Google Scholar 

  9. Garcia, R.D., Valavanis, K.P., Kandel, A.: Fuzzy logic based autonomous unmanned helicopter navigation with a tail rotor failure. In: 15th Mediterranean Conference on Control and Automation, Athens, Greece (2007)

  10. Ertem, M.C.: An airborne synthetic vision system with HITS symbology using X-Plane for a head up display. In: Digital Avionics Systems Conference, DASC (2005)

  11. “Downloads.” vol. 2009: X-Plane.Org (2009)

  12. Garcia, R.D.: Designing an autonomous helicopter testbed: from conception through implementation. In: Computer Science Engineering. vol. Ph.D., p. 305. University of South Florida, Tampa (2008)

    Google Scholar 

  13. Barnes, L., Fields, M.A., Valavanis, K.: Unmanned ground vehicle swarm formation control using potential fields. In: 15th Mediterranean Conference on Control and Automation, pp. 1–8 (2007)

  14. Barnes, L., Fields, M.A., Valavanis, K.: Heterogeneous swarm formation control using bivariate normal functions to generate potential fields. International Transactions on Systems Science and Applications 2, 346–359 (2007)

    Google Scholar 

  15. Barnes, L., Garcia, R., Fields, M.A., Valavanis, K.: Adaptable Formations utilizing heterogeneous unmanned systems. In: SPIE Defense and Security Conference (2009)

  16. Reddy, M., Iverson, L.: GeoVRML 1.1 - Concepts. Available from: http://www.ai.sri.com/geovrml/1.1/doc/concepts.html (2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Garcia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garcia, R., Barnes, L. Multi-UAV Simulator Utilizing X-Plane. J Intell Robot Syst 57, 393–406 (2010). https://doi.org/10.1007/s10846-009-9372-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-009-9372-4

Keywords

Navigation