Skip to main content

Advertisement

Log in

Evolution of Fuzzy Controllers for Robotic Vehicles: The Role of Fitness Function Selection

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

An important issue not addressed in the literature, is related to the selection of the fitness function parameters which are used in the evolution process of fuzzy logic controllers for mobile robot navigation. The majority of the fitness functions used for controllers evolution are empirically selected and (most of times) task specified. This results to controllers which heavily depend on fitness function selection. In this paper we compare three major different types of fitness functions and how they affect the navigation performance of a fuzzy logic controlled real robot. Genetic algorithms are employed to evolve the membership functions of these controllers. Further, an efficiency measure is introduced for the systematic analysis and benchmarking of overall performance. This measure takes into account important performance results of the robot during experimentation, such as the final distance from target, the time needed to reach its final position, the time of sensor activation, the mean linear velocity e.t.c. In order to examine the validity of our approach a low cost mobile robot has been developed, which is used as a testbed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Tsourveloudis, N.C., Doitsidis, L., Valavanis, K.P.: Autonomous navigation of unmanned vehicles: a fuzzy logic perspective. In: Kordic, V., Lazinica, A., Merdan, M. (eds.) Cutting Edge Robotics, pp. 291–310. Pro Literatur Verlag, Mammendorf (2005)

    Google Scholar 

  2. Yang, X., Moallem, M., Patel, R.V.: A layered goal-oriented fuzzy motion planning strategy for mobile robot navigation. IEEE Trans. Syst. Man Cybern., B 35(6), 1214–1224 (2005)

    Article  Google Scholar 

  3. Resu, P., Petriu, E.M., Whalen, T.M., Cornell, A., Spoelder, H.J.W.: Behavior-based neuro-fuzzy controller for mobile robot navigation. IEEE Trans. Instrum. Meas. 52(4), 1335–1340 (2003). doi:10.1109/TIM.2003.816846

    Article  Google Scholar 

  4. Tsourveloudis, N.C., Valavanis, K.P., Hebert, T.: Autonomous vehicle navigation utilizing electrostatic potentional fields and fuzzy logic. IEEE Trans. Robot. Autom. 17(4), 490–497 (2001)

    Article  Google Scholar 

  5. Ye, C., Yung, N.H.C., Wang, D.: A fuzzy controller with supervised learning assisted reinforcement learning algorithm for obstacle avoidance. IEEE Trans. Syst. Man Cybern., B 33(1), 17–27 (2003)

    Article  Google Scholar 

  6. Lee, S.-I., Cho, S.-B.: Emergent behaviors of a fuzzy sensory-motor controller evolved by genetic algorithm. IEEE Trans. Syst. Man Cybern., B 31, 919–929 (2001)

    Article  Google Scholar 

  7. Kim, S.H., Park, C., Harashima, F.: A self-organized fuzzy controller for wheeled mobile robot using an evolutionary algorithm. IEEE Trans. Ind. Electron. 48(2), 467–474 (2001). doi:10.1109/41.915427

    Article  Google Scholar 

  8. Hagras, H., Callaghan, V., Colley, M.: Learning and adaptation of an intelligent mobile robot navigator operating in unstructured environment based on a novel online fuzzy-genetic system. Fuzzy Sets Syst. 141, 107–160 (2004). doi:10.1016/S0165-0114(03)00116-7

    Article  MathSciNet  Google Scholar 

  9. Hoffman, F., Pfister, G.: Evolutionary design of a fuzzy knowledge base for a mobile robot. Int. J. Approx. Reason. 17(4), 447–469 (1997). doi:10.1016/S0888-613X(97)00005-4

    Article  Google Scholar 

  10. Matellan, V., Fernadez, C., Molina, J.M.: Genetic learning of fuzzy reactive controllers. Robot. Auton. Syst. 25, 33–41 (1998). doi:10.1016/S0921-8890(98)00035-9

    Article  Google Scholar 

  11. Nanayakkara, D.P.T., Watanabe, K., Kiguchi, K., Izumi, K.: Evolutionary learning of a fuzzy behavior based controller for a nonholonomic mobile robot in a class of dynamical environments. J. Intell. Robot. Syst. 32, 255–277 (2001). doi:10.1023/A:1013939308620

    Article  MATH  Google Scholar 

  12. Nolfi, S., Floreano, D.: Evolutionary Robotics: The Biology, Intelligence, and Technology of Self-Organizing Machines. MIT, Cambridge (2000)

    Google Scholar 

  13. Nelson, A.L., Barlow, G.J., Doitsidis, L.: Fitness function in evolutionary robotics: a survey and analysis. Robot. Auton. Syst. 57(4), 345–370 (2008)

    Article  Google Scholar 

  14. Kaiser, M., Friedrich, H., Buckingham, R., Khodabandehloo, K., Tomlinson, S.: Towards a general measure of skill for learning robots. In: Proceedings of the 5th European Workshop on Learning Robots, Bari, Italy (1996)

  15. Doitsidis, L., Valavanis, K.P., Tsourveloudis, N.: Fuzzy logic based autonomous skid steering vehicle navigation. In: CD-ROM Proceedings of the 2002 IEEE International Conference on Robotics and Automation, Washington D.C. (2002)

  16. Valavanis, K.P., Doitsidis, L., Long, M., Murphy, R.R.: Validation of a distributed field robot architecture integrated with a MATLAB based control theoretic environment: a case study of fuzzy logic based robot navigation. IEEE Robot. Autom. Mag. 13(3), 93-107 (2006)

    Article  Google Scholar 

  17. Cordon, O., Herrera, F., Hoffmann, F., Magdalena, L.: Genetic Fuzzy Systems: Evolutionary Tuning and Learning of Fuzzy Knowledge Bases. World Scientific, Singapore (2001)

    MATH  Google Scholar 

  18. Tsourveloudis, N., Doitsidis, L., Ioannidis, S.: Work-in-process scheduling by evolutionary tuned fuzzy controllers. Int. J. Adv. Manuf. Technol. 34(7–8), 748–761 (2007). doi:10.1007/s00170-006-0636-x

    Article  Google Scholar 

  19. Michalewicz, Z.: Genetic Algorithms+Data Structures=Evolution Programs. Springer, Heidelberg (1994)

    MATH  Google Scholar 

  20. Floreano, D., Mondana, F.: Evolution of homing navigation in a real mobile robot. IEEE Trans. Syst. Man Cybern., B 26(3), 396–407 (1996)

    Article  Google Scholar 

  21. Nelson, A.L., Doitsidis, L., Valavanis, K.P., Long, M.T., Murphy, R.R.: Encorporation of MATLAB into a distributed behavioral robotics architecture. In: Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS04), pp. 2028–2035. Sendai, Japan (2004)

  22. Borenstein, J., Everett, H.R., Feng, L.: Where Am I? Sensors and Methods for Mobile Robot Positioning. Univ Michigan, Ann Arbor (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Doitsidis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doitsidis, L., Tsourveloudis, N.C. & Piperidis, S. Evolution of Fuzzy Controllers for Robotic Vehicles: The Role of Fitness Function Selection. J Intell Robot Syst 56, 469 (2009). https://doi.org/10.1007/s10846-009-9332-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-009-9332-z

Keywords

Navigation