Abstract
An important issue not addressed in the literature, is related to the selection of the fitness function parameters which are used in the evolution process of fuzzy logic controllers for mobile robot navigation. The majority of the fitness functions used for controllers evolution are empirically selected and (most of times) task specified. This results to controllers which heavily depend on fitness function selection. In this paper we compare three major different types of fitness functions and how they affect the navigation performance of a fuzzy logic controlled real robot. Genetic algorithms are employed to evolve the membership functions of these controllers. Further, an efficiency measure is introduced for the systematic analysis and benchmarking of overall performance. This measure takes into account important performance results of the robot during experimentation, such as the final distance from target, the time needed to reach its final position, the time of sensor activation, the mean linear velocity e.t.c. In order to examine the validity of our approach a low cost mobile robot has been developed, which is used as a testbed.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Tsourveloudis, N.C., Doitsidis, L., Valavanis, K.P.: Autonomous navigation of unmanned vehicles: a fuzzy logic perspective. In: Kordic, V., Lazinica, A., Merdan, M. (eds.) Cutting Edge Robotics, pp. 291–310. Pro Literatur Verlag, Mammendorf (2005)
Yang, X., Moallem, M., Patel, R.V.: A layered goal-oriented fuzzy motion planning strategy for mobile robot navigation. IEEE Trans. Syst. Man Cybern., B 35(6), 1214–1224 (2005)
Resu, P., Petriu, E.M., Whalen, T.M., Cornell, A., Spoelder, H.J.W.: Behavior-based neuro-fuzzy controller for mobile robot navigation. IEEE Trans. Instrum. Meas. 52(4), 1335–1340 (2003). doi:10.1109/TIM.2003.816846
Tsourveloudis, N.C., Valavanis, K.P., Hebert, T.: Autonomous vehicle navigation utilizing electrostatic potentional fields and fuzzy logic. IEEE Trans. Robot. Autom. 17(4), 490–497 (2001)
Ye, C., Yung, N.H.C., Wang, D.: A fuzzy controller with supervised learning assisted reinforcement learning algorithm for obstacle avoidance. IEEE Trans. Syst. Man Cybern., B 33(1), 17–27 (2003)
Lee, S.-I., Cho, S.-B.: Emergent behaviors of a fuzzy sensory-motor controller evolved by genetic algorithm. IEEE Trans. Syst. Man Cybern., B 31, 919–929 (2001)
Kim, S.H., Park, C., Harashima, F.: A self-organized fuzzy controller for wheeled mobile robot using an evolutionary algorithm. IEEE Trans. Ind. Electron. 48(2), 467–474 (2001). doi:10.1109/41.915427
Hagras, H., Callaghan, V., Colley, M.: Learning and adaptation of an intelligent mobile robot navigator operating in unstructured environment based on a novel online fuzzy-genetic system. Fuzzy Sets Syst. 141, 107–160 (2004). doi:10.1016/S0165-0114(03)00116-7
Hoffman, F., Pfister, G.: Evolutionary design of a fuzzy knowledge base for a mobile robot. Int. J. Approx. Reason. 17(4), 447–469 (1997). doi:10.1016/S0888-613X(97)00005-4
Matellan, V., Fernadez, C., Molina, J.M.: Genetic learning of fuzzy reactive controllers. Robot. Auton. Syst. 25, 33–41 (1998). doi:10.1016/S0921-8890(98)00035-9
Nanayakkara, D.P.T., Watanabe, K., Kiguchi, K., Izumi, K.: Evolutionary learning of a fuzzy behavior based controller for a nonholonomic mobile robot in a class of dynamical environments. J. Intell. Robot. Syst. 32, 255–277 (2001). doi:10.1023/A:1013939308620
Nolfi, S., Floreano, D.: Evolutionary Robotics: The Biology, Intelligence, and Technology of Self-Organizing Machines. MIT, Cambridge (2000)
Nelson, A.L., Barlow, G.J., Doitsidis, L.: Fitness function in evolutionary robotics: a survey and analysis. Robot. Auton. Syst. 57(4), 345–370 (2008)
Kaiser, M., Friedrich, H., Buckingham, R., Khodabandehloo, K., Tomlinson, S.: Towards a general measure of skill for learning robots. In: Proceedings of the 5th European Workshop on Learning Robots, Bari, Italy (1996)
Doitsidis, L., Valavanis, K.P., Tsourveloudis, N.: Fuzzy logic based autonomous skid steering vehicle navigation. In: CD-ROM Proceedings of the 2002 IEEE International Conference on Robotics and Automation, Washington D.C. (2002)
Valavanis, K.P., Doitsidis, L., Long, M., Murphy, R.R.: Validation of a distributed field robot architecture integrated with a MATLAB based control theoretic environment: a case study of fuzzy logic based robot navigation. IEEE Robot. Autom. Mag. 13(3), 93-107 (2006)
Cordon, O., Herrera, F., Hoffmann, F., Magdalena, L.: Genetic Fuzzy Systems: Evolutionary Tuning and Learning of Fuzzy Knowledge Bases. World Scientific, Singapore (2001)
Tsourveloudis, N., Doitsidis, L., Ioannidis, S.: Work-in-process scheduling by evolutionary tuned fuzzy controllers. Int. J. Adv. Manuf. Technol. 34(7–8), 748–761 (2007). doi:10.1007/s00170-006-0636-x
Michalewicz, Z.: Genetic Algorithms+Data Structures=Evolution Programs. Springer, Heidelberg (1994)
Floreano, D., Mondana, F.: Evolution of homing navigation in a real mobile robot. IEEE Trans. Syst. Man Cybern., B 26(3), 396–407 (1996)
Nelson, A.L., Doitsidis, L., Valavanis, K.P., Long, M.T., Murphy, R.R.: Encorporation of MATLAB into a distributed behavioral robotics architecture. In: Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS04), pp. 2028–2035. Sendai, Japan (2004)
Borenstein, J., Everett, H.R., Feng, L.: Where Am I? Sensors and Methods for Mobile Robot Positioning. Univ Michigan, Ann Arbor (1996)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Doitsidis, L., Tsourveloudis, N.C. & Piperidis, S. Evolution of Fuzzy Controllers for Robotic Vehicles: The Role of Fitness Function Selection. J Intell Robot Syst 56, 469 (2009). https://doi.org/10.1007/s10846-009-9332-z
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10846-009-9332-z