Skip to main content
Log in

Lyapunov-Based Nonlinear Disturbance Observer for Serial n-Link Robot Manipulators

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

In this paper we extend the work done by Chen et al. (IEEE Trans Ind Electron 47(4):932–938, 2000) which proposed a nonlinear disturbance observer for two-link robot manipulators to n-link robot manipulators. A general form of dynamic equations of serial n-link robot manipulator is considered, and the stability analysis of the proposed observer is performed by using Lyapunov’s direct method. Although it seems that the formulation of disturbance observer is easy to derive, choosing the disturbance observer gain to guarantee stability is really hard. In this paper it is shown that the design parameter can be selected depends on the maximum velocity and physical parameters of robot manipulator to guarantee the global asymptotic stability of the disturbance observer. Using this nonlinear disturbance observer, no accurate dynamic model is required to achieve high precision motion control, because it makes the system robust against internal disturbances such as unmodeled dynamics and external disturbances such as friction in joints. The effectiveness of the proposed observer is investigated by numerical simulation for three-Dofs robot manipulator. In fact, controller with disturbance observer has more superior tracking performance, with a wide range of payloads and in the presence of friction in joints. It is also found that, although the proposed observer is designed for slow varying disturbances, it can estimate rapid time varying disturbances very well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, W.H., Balance, D.J., Gawthrop, P.J., O’Reilly, J.: A nonlinear disturbance observer for robotic manipulators. IEEE Trans. Ind. Electron. 47(4), 932–938 (2000). doi:10.1109/41.857974

    Article  Google Scholar 

  2. Tsai, M.C., Tomizuka, M.: Model reference adaptive control for robot manipulators-continuous time theory and digital implementation. Symposium on Robotics 11, 199–209 (1988)

    Google Scholar 

  3. Tung, P.C., Wang, S.R., Hong, F.Y.: Application of MRAC theory for adaptive control of a constrained robot manipulator. Int. J. Mach. Tools Manuf. 40(14), 2083–2097 (2000). doi:10.1016/S0890-6955(00)00034-1

    Article  Google Scholar 

  4. Cortesao, R.: On Kalman active observers. J. Intell. Robot. Syst. 48(2), 131–155 (2007). doi:10.1007/s10846-006-9045-5

    Article  Google Scholar 

  5. Lefebvre, T., Bruyninckx, H., Schutter, J.D.: Online statistical model recognition and state estimation for autonomous compliant motion. IEEE Trans. Syst. Man Cybern. 35(1), 16–39 (2005). doi:10.1109/TSMCC.2004.840053

    Article  Google Scholar 

  6. Parlakci, M.N.A., Jafaroy, E.M., Istefanopulos, Y.: New variable structure PD-controllers design for robot manipulators with parameter perturbations. Int. J. Robot. Autom. 19(3), 134–142 (2004)

    Google Scholar 

  7. Liang, Y.W., Xu, S.D., Chu, T.C.: Robust control of the robot manipulator via an improved sliding mode scheme. IEEE International Conference on Mechatronics and Automation, pp. 1593–1598 (2007)

  8. Khelfi, M.F., Abdessameud, A.: Robust H-infinity trajectory tracking controller for a 6 Dof PUMA 560 robot manipulator. IEEE Int. Conf. Electric Mach. Drives 1, 88–94 (2007)

    Article  Google Scholar 

  9. Siqueira, A.A.G., Terra, M.H., Maciel, B.C.O.: Nonlinear mixed H2/H-infinity control applied to manipulators via actuation redundancy. Control Eng. Pract. 14, 327–335 (2006). doi:10.1016/j.conengprac.2004.12.019

    Article  Google Scholar 

  10. Eom, K.S., Suh, I.H., Chung, W.K.: Disturbance observer based path tracking control of robot manipulator considering torque saturation. International Conference on Advanced Robotics, pp. 651–657 (1997)

  11. Liu, Z.L., Svoboda, L.: A new control scheme for nonlinear systems with disturbances. IEEE Trans. Contr. Syst. Technol. 14(1), 176–181 (2006). doi:10.1109/TCST.2005.860510

    Article  Google Scholar 

  12. Komada, S., Machii, N., Hori, T.: Control of redundant manipulators considering order of disturbance observer. IEEE Trans. Ind. Electron. 47(2), 413–420 (2000). doi:10.1109/41.836357

    Article  Google Scholar 

  13. Radke, A., Gao, Z.: A survey of state and disturbance observers for practitioners. In: Proceedings of the American Control Conference ACC/IEEE (2006)

  14. Park, S.K., Lee, S.H.: Disturbance observer based robust control for industrial robots with flexible joints. International Conference on Control, Automation and Systems, pp. 584–589 (2007)

  15. Nakao, M., Ohnishi, K., Miyachi, K.: A robust decentralized joint control based on interference estimation. IEEE Int. Conf. Robot. Autom. 4, 326–331 (1987)

    Google Scholar 

  16. Kaneko, K., Ohnishi, K., Komoriya, K.: A design method for manipulator control based on disturbance observer. Int. Conf. Robot. Syst. 2, 1405–1412 (1994)

    Google Scholar 

  17. Ohnishi, K.: Industry applications of disturbance observer. International Conference on Recent Advances in Mechatronics, pp. 72–77 (1995)

  18. Katsura, S., Matsumoto, Y., Ohnishi, K.: Analysis and experimental validation of force bandwidth for force control. IEEE Trans. Electron. 53(3), 922–928 (2006). doi:10.1109/TIE.2006.874262

    Article  Google Scholar 

  19. Piraisoodi, T., Sadhu, S.: Characteristic analysis of high order disturbance observer. IEEE INDICON, pp. 431–436 (2005)

  20. Bickel, R.J., Tomizuka, M.: Disturbance observer based hybrid impedance control. In: Proceedings of the American Control Conference (1995)

  21. Kim, B.K., Chung, W.K.: Advanced disturbance observer design for mechanical positioning systems. IEEE Trans. Ind. Electron. 50(6), 1207–1216 (2003). doi:10.1109/TIE.2003.819695

    Article  Google Scholar 

  22. Chen, X., Zhai, G., Fukuda, T.: An approximate inverse system for nonminimum phase systems and its application to disturbance observer. J. Syst. Contr. Lett. 52(3–4), 193–207 (2004). doi:10.1016/j.sysconle.2003.11.011

    Article  MathSciNet  Google Scholar 

  23. Yang, Z.J., Tsubakihara, H., Kanae, S., Wada, K., Su, C.Y.: A novel robust nonlinear motion controller with disturbance observer. IEEE International Conference on Control Applications, pp. 320–325 (2006)

  24. Shahruz, S.M.: Performance enhancement of a class of nonlinear systems by disturbance observers. IEEE/ASME Trans. Mechatron. 5(3), 319–323 (2000)

    Article  Google Scholar 

  25. Kravaris, C., Sotiropoulos, V., Georgiou, C., Kazantzis, N., Xiao, M., Krener, A.J.: Nonlinear observer design for state and disturbance estimation. J. Syst. Contr. Lett. 56, 730–735 (2007). doi:10.1016/j.sysconle.2007.05.001

    Article  MATH  MathSciNet  Google Scholar 

  26. Xiong, Y., Saif, M.: Unknown Disturbance inputs estimation based on a state functional observer design. Automatica 39, 1389–1398 (2003). doi:10.1016/S0005-1098(03)00087-6

    Article  MATH  MathSciNet  Google Scholar 

  27. Kosaka, Y., Shimada, A., Viboonchaicheep, P.: Vibration control without estimated disturbance feedback for robot manipulators. IECON’03 1, 848–853 (2003)

    Google Scholar 

  28. Lu, Y.S., Cheng, C.M.: Disturbance-observer-based repetitive control with sliding modes. In: Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 1360–1365 (2005)

  29. Fei, Y.N., Smith, J.S., Wu, Q.H.: Sliding mode control of robot manipulators based on sliding mode perturbation observation. J. Syst. Contr. Eng. 220(3), 201–210 (2006)

    Google Scholar 

  30. Dabroom, A.M., Khalil, H.K.: Output feedback sampled-data control of nonlinear systems using high-gain observers. IEEE Trans. Automat. Contr. 46(11), 1712–1725 (2001). doi:10.1109/9.964682

    Article  MATH  MathSciNet  Google Scholar 

  31. Freidovich, L.B., Khalil, H.K.: Robust feedback linearization using extended high-gain observers. In: Proceedings of the 45th IEEE Conference on Decision & Control, pp. 983–988 (2006)

  32. Mita, T., Hirata, M., Murata, K., Zhan, H.: H-infinity control versus disturbance-observer-based control. IEEE Trans. Ind. Electron. 45(3), 488–495 (1998). doi:10.1109/41.679007

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amin Nikoobin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikoobin, A., Haghighi, R. Lyapunov-Based Nonlinear Disturbance Observer for Serial n-Link Robot Manipulators. J Intell Robot Syst 55, 135–153 (2009). https://doi.org/10.1007/s10846-008-9298-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-008-9298-2

Keywords

Navigation