Abstract
Induction machines (IMs) are utilized in different industrial sectors such as manufacturing, transportation, transmission, and energy due to their ruggedness, low cost, and high efficiency. If IMs fail without advanced warning, unscheduled maintenance needs to be performed, leading to downtime and maintenance costs for asset owners. To avoid these, conducting prognostics and health management (PHM) for IMs is indispensable. There are different PHM methods (expert knowledge, physics-based, and machine learning) to analyze the health and estimate the remaining useful life (RUL) of IMs. It is essential to select appropriate methods and algorithms to solve practical engineering problems by comparing their pros and cons. This paper will systematically summarize the application of the PHM framework to IMs and comprehensively present how to select appropriate general methods as well as specific algorithms applied in the PHM for IMs to solve practical engineering problems, aiming to provide some guidance for future researchers and practitioners.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Ahmad, W., Khan, S. A., Islam, M. M. M., & Kim, J.-M. (2019). A reliable technique for remaining useful life estimation of rolling element bearings using dynamic regression models. Reliability Engineering & System Safety, 184, 67–76. https://doi.org/10.1016/j.ress.2018.02.003
Ahmad, W., Khan, S. A., & Kim, J.-M. (2017). A hybrid prognostics technique for rolling element bearings using adaptive predictive models. IEEE Transactions on Industrial Electronics, 65(2), 1577–1584. https://doi.org/10.1109/TIE.2017.2733487
Atta, M.E.E.-D., Ibrahim, D. K., & Gilany, M. I. (2022). Broken bar fault detection and diagnosis techniques for induction motors and drives: State of the art. IEEE Access, 10, 88504–88526. https://doi.org/10.1109/ACCESS.2022.3200058
Barbieri, M., Nguyen, K. T. P., Diversi, R., Medjaher, K., & Tilli, A. (2021). RUL prediction for automatic machines: A mixed edge-cloud solution based on model-of-signals and particle filtering techniques. Journal of Intelligent Manufacturing, 32(5), 1421–1440. https://doi.org/10.1007/s10845-020-01696-6
Bazan, G. H., Scalassara, P. R., Endo, W., Goedtel, A., Cunha Palacios, R. H., & Fontes Godoy, W. (2018). Stator short-circuit diagnosis in induction motors using mutual information and intelligent systems. IEEE Transactions on Industrial Electronics, 66(4), 3237–3246. https://doi.org/10.1109/TIE.2018.2840983
Bucci, G., Ciancetta, F., & Fiorucci, E. (2019). Apparatus for online continuous diagnosis of induction motors based on the SFRA technique. IEEE Transactions on Instrumentation and Measurement, 69(7), 4134–4144. https://doi.org/10.1109/TIM.2019.2942172
Burriel-Valencia, J., Puche-Panadero, R., Martinez-Roman, J., Sapena-Bano, A., & Pineda-Sanchez, M. (2017). Short-frequency fourier transform for fault diagnosis of induction machines working in transient regime. IEEE Transactions on Instrumentation and Measurement, 66(3), 432–440. https://doi.org/10.1109/TIM.2016.2647458
Cao, H., Fan, F., Zhou, K., & He, Z. (2016). Wheel-bearing fault diagnosis of trains using empirical wavelet transform. Measurement, 82, 439–449. https://doi.org/10.1016/j.measurement.2016.01.023
Cao, Y., Jia, M., Ding, P., & Ding, Y. (2021). Transfer learning for remaining useful life prediction of multi-conditions bearings based on bidirectional-GRU network. Measurement, 178, 109287. https://doi.org/10.1016/j.measurement.2021.109287
Chen, Q., Lin, N., Bu, S., Wang, H., & Zhang, B. (2022). Interpretable time-adaptive transient stability assessment based on dual-stage attention mechanism. IEEE Transactions on Power Systems. https://doi.org/10.1109/TPWRS.2022.3184981
Cheng, H., Kong, X., Wang, Q., Ma, H., Yang, S., & Chen, G. (2023). Deep transfer learning based on dynamic domain adaptation for remaining useful life prediction under different working conditions. Journal of Intelligent Manufacturing, 34(2), 587–613. https://doi.org/10.1007/s10845-021-01814-y
Climente-Alarcon, V., Antonino-Daviu, J. A., Strangas, E. G., & Riera-Guasp, M. (2014). Rotor-bar breakage mechanism and prognosis in an induction motor. IEEE Transactions on Industrial Electronics, 62(3), 1814–1825. https://doi.org/10.1109/TIE.2014.2336604
Climente-Alarcon, V., Arkkio, A., & Antonino-Daviu, J. (2019). Study of thermal stresses developed during a fatigue test on an electrical motor rotor cage. International Journal of Fatigue, 120, 56–64. https://doi.org/10.1016/j.ijfatigue.2018.11.003
Cui, M., Li, F., Cui, H., Bu, S., & Shi, D. (2021). Data-driven joint voltage stability assessment considering load uncertainty: A variational bayes inference integrated with multi-CNNs. IEEE Transactions on Power Systems, 37(3), 1904–1915. https://doi.org/10.1109/TPWRS.2021.3111151
de Jesus Romero-Troncoso, R. (2016). Multirate signal processing to improve FFT-based analysis for detecting faults in induction motors. IEEE Transactions on Industrial Informatics, 13(3), 1291–1300. https://doi.org/10.1109/TII.2016.2603968
Decner, A., Baranski, M., Jarek, T., & Berhausen, S. (2022). Methods of diagnosing the insulation of electric machines windings. Energies, 15(22), 8465. https://doi.org/10.3390/en15228465
Ding, N., Li, H., Yin, Z., Zhong, N., & Zhang, L. (2020). Journal bearing seizure degradation assessment and remaining useful life prediction based on long short-term memory neural network. Measurement, 166, 108215. https://doi.org/10.1016/j.measurement.2020.108215
Ding, Y., Ding, P., Zhao, X., Cao, Y., & Jia, M. (2022). Transfer learning for remaining useful life prediction across operating conditions based on multisource domain adaptation. IEEE/ASME Transactions on Mechatronics, 27(5), 4143–4152. https://doi.org/10.1109/TMECH.2022.3147534
Ding, Y., Jia, M., Miao, Q., & Huang, P. (2021). Remaining useful life estimation using deep metric transfer learning for kernel regression. Reliability Engineering & System Safety, 212, 107583. https://doi.org/10.1016/j.ress.2021.107583
dos Reis, W. P. N., Couto, G. E., & Junior, O. M. (2022). Automated guided vehicles position control: A systematic literature review. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-021-01893-x
Drakaki, M., Karnavas, Y. L., Tziafettas, I. A., Linardos, V., & Tzionas, P. (2022). Machine learning and deep learning based methods toward industry 4.0 predictive maintenance in induction motors: State of the art survey. Journal of Industrial Engineering and Management,15(1), 31–57. https://doi.org/10.3926/jiem.3597.
Duan, J., Ye, Q., & Hu, H. (2022). Utility analysis and enhancement of LDP mechanisms in high-dimensional space. In 2022 IEEE 38th international conference on data engineering (ICDE), IEEE (pp. 407–419). https://doi.org/10.48550/arxiv.2201.07469.
Elforjani, M., & Shanbr, S. (2017). Prognosis of bearing acoustic emission signals using supervised machine learning. IEEE Transactions on Industrial Electronics, 65(7), 5864–5871. https://doi.org/10.1109/TIE.2017.2767551
Feldman, K., Jazouli, T., & Sandborn, P. A. (2009). A methodology for determining the return on investment associated with prognostics and health management. IEEE Transactions on Reliability, 58(2), 305–316. https://doi.org/10.1109/TR.2009.2020133
Gangsar, P., & Tiwari, R. (2020). Signal based condition monitoring techniques for fault detection and diagnosis of induction motors: A state-of-the-art review. Mechanical Systems and Signal Processing, 144, 106908. https://doi.org/10.1016/j.ymssp.2020.106908
Garcia-Bracamonte, J. E., Ramirez-Cortes, J. M., de Jesus Rangel-Magdaleno, J., Gomez-Gil, P., Peregrina-Barreto, H., & Alarcon-Aquino, V. (2019). An approach on MCSA-based fault detection using independent component analysis and neural networks. IEEE Transactions on Instrumentation and Measurement, 68(5), 1353–1361. https://doi.org/10.1109/TIM.2019.2900143
Garcia-Calva, T., Morinigo-Sotelo, D., Fernandez-Cavero, V., & Romero-Troncoso, R. (2022). Early detection of faults in induction motors-a review. Energies, 15(21), 7855. https://doi.org/10.3390/en15217855
Goyal, D., Choudhary, A., Pabla, B. S., & Dhami, S. S. (2020). Support vector machines based non-contact fault diagnosis system for bearings. Journal of Intelligent Manufacturing, 31(5), 1275–1289. https://doi.org/10.1007/s10845-019-01511-x
Gu, M., & Chen, Y. (2019). Two improvements of similarity-based residual life prediction methods. Journal of Intelligent Manufacturing, 30(1), 303–315. https://doi.org/10.1007/s10845-016-1249-3
Guan, Y., Meng, Z., Sun, D., Liu, J., & Fan, F. (2021). 2MNet: Multi-sensor and multi-scale model toward accurate fault diagnosis of rolling bearing. Reliability Engineering & System Safety, 216, 108017. https://doi.org/10.1016/j.ress.2021.108017
Guo, L., Li, N., Jia, F., Lei, Y., & Lin, J. (2017). A recurrent neural network based health indicator for remaining useful life prediction of bearings. Neurocomputing, 240, 98–109. https://doi.org/10.1016/j.neucom.2017.02.045
Guo, S., Yang, T., Gao, W., Zhang, C., & Zhang, Y. (2018). An intelligent fault diagnosis method for bearings with variable rotating speed based on pythagorean spatial pyramid pooling CNN. Sensors, 18(11), 3857. https://doi.org/10.3390/s18113857
Haddad, G., Sandborn, P. A., & Pecht, M. G. (2012). An options approach for decision support of systems with prognostic capabilities. IEEE Transactions on Reliability, 61(4), 872–883. https://doi.org/10.1109/TR.2012.2220699
Halder, S., Bhat, S., Zychma, D., & Sowa, P. (2022). Broken rotor bar fault diagnosis techniques based on motor current signature analysis for induction motor-a review. Energies, 15(22), 8569. https://doi.org/10.3390/en15228569
Hamadache, M., Jung, J. H., Park, J., & Youn, B. D. (2019). A comprehensive review of artificial intelligence-based approaches for rolling element bearing PHM: Shallow and deep learning. JMST Advances, 1, 125–151. https://doi.org/10.1007/s42791-019-0016-y
Han, L., Li, P., Yu, S., Chen, C., Fei, C., & Lu, C. (2022). Creep/fatigue accelerated failure of Ni-based superalloy turbine blade: Microscopic characteristics and void migration mechanism. International Journal of Fatigue, 154, 106558. https://doi.org/10.1016/j.ijfatigue.2021.106558
Han, L., Wang, Y., Zhang, Y., Lu, C., Fei, C., & Zhao, Y. (2021a). Competitive cracking behavior and microscopic mechanism of Ni-based superalloy blade respecting accelerated CCF failure. International Journal of Fatigue, 150, 106306. https://doi.org/10.1016/j.ijfatigue.2021.106306
Han, L., Zheng, S., Tao, M., Fei, C., Hu, Y., Huang, B., & Yuan, L. (2021b). Service damage mechanism and interface cracking behavior of Ni-based superalloy turbine blades with aluminized coating. International Journal of Fatigue, 153, 106500. https://doi.org/10.1016/j.ijfatigue.2021.106500
Hassani, H., Zarei, J., Arefi, M. M., & Razavi-Far, R. (2017). zSlices-based general type-2 fuzzy fusion of support vector machines with application to bearing fault detection. IEEE Transactions on Industrial Electronics, 64(9), 7210–7217. https://doi.org/10.1109/TIE.2017.2688963
He, A., & Jin, X. (2021). Deep variational autoencoder classifier for intelligent fault diagnosis adaptive to unseen fault categories. IEEE Transactions on Reliability, 70(4), 1581–1595. https://doi.org/10.1109/TR.2021.3090310
Hu, T., Guo, Y., Gu, L., Zhou, Y., Zhang, Z., & Zhou, Z. (2022). Remaining useful life prediction of bearings under different working conditions using a deep feature disentanglement based transfer learning method. Reliability Engineering & System Safety, 219, 108265. https://doi.org/10.1016/j.ress.2021.108265
Huang, C., Bu, S., Chen, Q., & Lee, H. H. (2022). Meta-Power: Next-Generation Smart Grid. Power Generation Technology,43(2), 287–304. https://doi.org/10.12096/j.2096-4528.pgt.22058.
Irfan, M., Saad, N., Ibrahim, R., & Asirvadam, V. S. (2017). Condition monitoring of induction motors via instantaneous power analysis. Journal of Intelligent Manufacturing, 28(6), 1259–1267. https://doi.org/10.1007/s10845-015-1048-2
Janssens, O., Slavkovikj, V., Vervisch, B., Stockman, K., Loccufier, M., Verstockt, S., Van de Walle, R., & Van Hoecke, S. (2016). Convolutional neural network based fault detection for rotating machinery. Journal of Sound and Vibration, 377, 331–345. https://doi.org/10.1016/j.jsv.2016.05.027
Jiang, C., Chen, H., Xu, Q., & Wang, X. (2022). Few-shot fault diagnosis of rotating machinery with two-branch prototypical networks. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-021-01904-x
Jiménez-Guarneros, M., Morales-Perez, C., & de Jesus Rangel-Magdaleno, J. (2021). Diagnostic of combined mechanical and electrical faults in ASD-powered induction motor using MODWT and a lightweight 1-D CNN. IEEE Transactions on Industrial Informatics, 18(7), 4688–4697. https://doi.org/10.1109/TII.2021.3120975
Jin, C., & Chen, X. (2021). An end-to-end framework combining time-frequency expert knowledge and modified transformer networks for vibration signal classification. Expert Systems with Applications, 171, 114570. https://doi.org/10.1016/j.eswa.2021.114570
Jin, X., Sun, Y., Que, Z., Wang, Y., & Chow, T. W. S. (2016). Anomaly detection and fault prognosis for bearings. IEEE Transactions on Instrumentation and Measurement, 65(9), 2046–2054. https://doi.org/10.1109/TIM.2016.2570398
Kang, M., Islam, M. R., Kim, J., Kim, J.-M., & Pecht, M. (2016). A hybrid feature selection scheme for reducing diagnostic performance deterioration caused by outliers in data-driven diagnostics. IEEE Transactions on Industrial Electronics, 63(5), 3299–3310. https://doi.org/10.1109/TIE.2016.2527623
Kedadouche, M., Thomas, M., & Tahan, A. (2016). A comparative study between empirical wavelet transforms and empirical mode decomposition methods: Application to bearing defect diagnosis. Mechanical Systems and Signal Processing, 81, 88–107. https://doi.org/10.1016/j.ymssp.2016.02.049
Kitchenham, B. (2004). Procedures for performing systematic reviews. Tech. rep., Keele University, Department of Computer Science, Technical Report TR/SE-0401.
Kumar, A., Vashishtha, G., Gandhi, C. P., Tang, H., & Xiang, J. (2021). Tacho-less sparse CNN to detect defects in rotor-bearing systems at varying speed. Engineering Applications of Artificial Intelligence, 104, 104401. https://doi.org/10.1016/j.engappai.2021.104401
Kumar, R. R., Andriollo, M., Cirrincione, G., Cirrincione, M., & Tortella, A. (2022). A comprehensive review of conventional and intelligence-based approaches for the fault diagnosis and condition monitoring of induction motors. Energies, 15(23), 8938. https://doi.org/10.3390/en15238938
Kumar, S., Mukherjee, D., Guchhait, P. K., Banerjee, R., Srivastava, A. K., Vishwakarma, D. N., & Saket, R. K. (2019). A comprehensive review of condition based prognostic maintenance (CBPM) for induction motor. IEEE Access, 7, 90690–90704. https://doi.org/10.1109/ACCESS.2019.2926527
Kumbhar, S. G., & Sudhagar, P. E. (2020). An integrated approach of adaptive neuro-fuzzy inference system and dimension theory for diagnosis of rolling element bearing. Measurement, 166, 108266. https://doi.org/10.1016/j.measurement.2020.108266
Kundu, P., Chopra, S., & Lad, B. K. (2019). Multiple failure behaviors identification and remaining useful life prediction of ball bearings. Journal of Intelligent Manufacturing, 30(4), 1795–1807. https://doi.org/10.1007/s10845-017-1357-8
Kusiak, A. (2017). Smart manufacturing must embrace big data. Nature, 544(7648), 23–25. https://doi.org/10.1038/544023a
Lee, W. J., Xia, K., Denton, N. L., Ribeiro, B., & Sutherland, J. W. (2021). Development of a speed invariant deep learning model with application to condition monitoring of rotating machinery. Journal of Intelligent Manufacturing, 32(2), 393–406. https://doi.org/10.1007/s10845-020-01578-x
Lei, C., Bu, S., Wang, Q., Zhou, N., Yang, L., & Xiong, X. (2021). Load transfer optimization considering hot-spot and top-oil temperature limits of transformers. IEEE Transactions on Power Delivery, 37(3), 2194–2208. https://doi.org/10.1109/TPWRD.2021.3106709
Li, C., Zhang, W., Peng, G., & Liu, S. (2017a). Bearing fault diagnosis using fully-connected winner-take-all autoencoder. IEEE Access, 6, 6103–6115. https://doi.org/10.1109/ACCESS.2017.2717492
Li, H., Wang, W., Huang, P., & Li, Q. (2020a). Fault diagnosis of rolling bearing using symmetrized dot pattern and density-based clustering. Measurement, 152, 107293. https://doi.org/10.1016/j.measurement.2019.107293
Li, N., Lei, Y., Lin, J., & Ding, S. X. (2015). An improved exponential model for predicting remaining useful life of rolling element bearings. IEEE Transactions on Industrial Electronics, 62(12), 7762–7773. https://doi.org/10.1109/TIE.2015.2455055
Li, R., Sopon, P., & He, D. (2012). Fault features extraction for bearing prognostics. Journal of Intelligent Manufacturing, 23(2), 313–321. https://doi.org/10.1007/s10845-009-0353-z
Li, S., Liu, G., Tang, X., Lu, J., & Hu, J. (2017b). An ensemble deep convolutional neural network model with improved D-S evidence fusion for bearing fault diagnosis. Sensors, 17(8), 1729. https://doi.org/10.3390/s17081729
Li, W., Shang, Z., Gao, M., Qian, S., Zhang, B., & Zhang, J. (2021). A novel deep autoencoder and hyperparametric adaptive learning for imbalance intelligent fault diagnosis of rotating machinery. Engineering Applications of Artificial Intelligence, 102, 104279. https://doi.org/10.1016/j.engappai.2021.104279
Li, X., Zhang, W., Ding, Q., & Sun, J.-Q. (2020b). Intelligent rotating machinery fault diagnosis based on deep learning using data augmentation. Journal of Intelligent Manufacturing, 31(2), 433–452. https://doi.org/10.1007/s10845-018-1456-1
Liang, X., Ali, M. Z., & Zhang, H. (2019). Induction motors fault diagnosis using finite element method: A review. IEEE Transactions on Industry Applications, 56(2), 1205–1217. https://doi.org/10.1109/TIA.2019.2958908
Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gotzsche, P. C., Ioannidis, J. P. A., Clarke, M., Devereaux, P. J., Kleijnen, J., & Moher, D. (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Journal of Clinical Epidemiology, 62(10), e1–e34. https://doi.org/10.1016/j.jclinepi.2009.06.006
Lim, C. K. R., & Mba, D. (2015). Switching kalman filter for failure prognostic. Mechanical Systems and Signal Processing, 52, 426–435. https://doi.org/10.1016/j.ymssp.2014.08.006
Liu, R., Meng, G., Yang, B., Sun, C., & Chen, X. (2016). Dislocated time series convolutional neural architecture: An intelligent fault diagnosis approach for electric machine. IEEE Transactions on Industrial Informatics, 13(3), 1310–1320. https://doi.org/10.1109/TII.2016.2645238
Liu, Y. Z., Shi, K. M., Li, Z. X., Ding, G. F., & Zou, Y. S. (2021). Transfer learning method for bearing fault diagnosis based on fully convolutional conditional Wasserstein adversarial networks. Measurement, 180, 109553. https://doi.org/10.1016/j.measurement.2021.109553
Liu, Y., Wang, Y., Chow, T. W., & Li, B. (2022). Deep adversarial subdomain adaptation network for intelligent fault diagnosis. IEEE Transactions on Industrial Informatics, 18(9), 6038–6046. https://doi.org/10.1109/TII.2022.3141783
Lu, C., Wang, Z.-Y., Qin, W.-L., & Ma, J. (2017). Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification. Signal Processing, 130, 377–388. https://doi.org/10.1016/j.sigpro.2016.07.028
Lu, W., Liang, B., Cheng, Y., Meng, D., Yang, J., & Zhang, T. (2016). Deep model based domain adaptation for fault diagnosis. IEEE Transactions on Industrial Electronics, 64(3), 2296–2305. https://doi.org/10.1109/TIE.2016.2627020
Mao, W., He, L., Yan, Y., & Wang, J. (2017). Online sequential prediction of bearings imbalanced fault diagnosis by extreme learning machine. Mechanical Systems and Signal Processing, 83, 450–473. https://doi.org/10.1016/j.ymssp.2016.06.024
Mao, W., Liu, J., Chen, J., & Liang, X. (2022). An interpretable deep transfer learning-based remaining useful life prediction approach for bearings with selective degradation knowledge fusion. IEEE Transactions on Instrumentation and Measurement, 71, 1–16. https://doi.org/10.1109/TIM.2022.3159010
Meng, Z., Li, J., Yin, N., & Pan, Z. (2020). Remaining useful life prediction of rolling bearing using fractal theory. Measurement,156, 107572. https://doi.org/10.1016/j.measurement.2020.107572 .
Mo, Y., Li, L., Huang, B., & Li, X. (2022). Few-shot RUL estimation based on model-agnostic meta-learning. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-022-01929-w
Nath, A. G., Udmale, S. S., & Singh, S. K. (2021). Role of artificial intelligence in rotor fault diagnosis: A comprehensive review. Artificial Intelligence Review, 54, 2609–2668. https://doi.org/10.1007/s10462-020-09910-w
Ni, Q., Ji, J., Feng, K., & Halkon, B. (2022). A fault information-guided variational mode decomposition (FIVMD) method for rolling element bearings diagnosis. Mechanical Systems and Signal Processing, 164, 108216. https://doi.org/10.1016/j.ymssp.2021.108216
Oh, H., Jung, J. H., Jeon, B. C., & Youn, B. D. (2017). Scalable and unsupervised feature engineering using vibration-imaging and deep learning for rotor system diagnosis. IEEE Transactions on Industrial Electronics, 65(4), 3539–3549. https://doi.org/10.1109/TIE.2017.2752151
Ojaghi, M., & Yazdandoost, N. (2015). Oil-whirl fault modeling, simulation, and detection in sleeve bearings of squirrel cage induction motors. IEEE Transactions on Energy Conversion, 30(4), 1537–1545. https://doi.org/10.1109/TEC.2015.2431722
Pacheco, F., Cerrada, M., Sánchez, R. V., Cabrera, D., Li, C., & Valente de Oliveira, J. (2017). Attribute clustering using rough set theory for feature selection in fault severity classification of rotating machinery. Expert Systems with Applications, 71, 69–86. https://doi.org/10.1016/j.eswa.2016.11.024
Pan, T., Chen, J., Pan, J., & Zhou, Z. (2019). A deep learning network via shunt-wound restricted Boltzmann machines using raw data for fault detection. IEEE Transactions on Instrumentation and Measurement, 69(7), 4852–4862. https://doi.org/10.1109/TIM.2019.2953436
Peng, W., Ye, Z. S., & Chen, N. (2019). Bayesian deep-learning-based health prognostics toward prognostics uncertainty. IEEE Transactions on Industrial Electronics, 67(3), 2283–2293. https://doi.org/10.1109/TIE.2019.2907440
Puche-Panadero, R., Martinez-Roman, J., Sapena-Bano, A., Burriel-Valencia, J., Pineda-Sanchez, M., Perez-Cruz, J., & Riera-Guasp, M. (2021). New method for spectral leakage reduction in the FFT of stator currents: Application to the diagnosis of bar breakages in cage motors working at very low slip. IEEE Transactions on Instrumentation and Measurement, 70, 1–11. https://doi.org/10.1109/TIM.2021.3056741
Ragab, A., Yacout, S., Ouali, M.-S., & Osman, H. (2019). Prognostics of multiple failure modes in rotating machinery using a pattern-based classifier and cumulative incidence functions. Journal of Intelligent Manufacturing, 30(1), 255–274. https://doi.org/10.1007/s10845-016-1244-8
Rajabi, S., Azari, M. S., Santini, S., & Flammini, F. (2022). Fault diagnosis in industrial rotating equipment based on permutation entropy, signal processing and multi-output neuro-fuzzy classifier. Expert Systems with Applications, 206, 117754. https://doi.org/10.1016/j.eswa.2022.117754
Ray, S., & Dey, D. (2022). Development of a comprehensive analytical model of induction motor under stator intern turn faults incorporating rotor slot harmonics. IEEE Transactions on Industrial Electronics, 70(2), 2037–2047. https://doi.org/10.1109/TIE.2022.3165294
Razavi-Far, R., Farajzadeh-Zanjani, M., & Saif, M. (2017). An integrated class-imbalanced learning scheme for diagnosing bearing defects in induction motors. IEEE Transactions on Industrial Informatics, 13(6), 2758–2769. https://doi.org/10.1109/TII.2017.2755064
Ren, L., Dong, J., Wang, X., Meng, Z., Zhao, L., & Deen, M. J. (2020). A data-driven auto-CNN-LSTM prediction model for lithium-ion battery remaining useful life. IEEE Transactions on Industrial Informatics, 17(5), 3478–3487. https://doi.org/10.1109/TII.2020.3008223
Sanchez-Londono, D., Barbieri, G., & Fumagalli, L. (2023). Smart retrofitting in maintenance: A systematic literature review. Journal of Intelligent Manufacturing, 34(1), 1–19. https://doi.org/10.1007/s10845-022-02002-2
Saufi, S. R., Ahmad, Z. A. B., Leong, M. S., & Lim, M. H. (2019). Low-speed bearing fault diagnosis based on ARSSAE model using acoustic emission and vibration signals. IEEE Access, 7, 46885–46897. https://doi.org/10.1109/ACCESS.2019.2909756
Shao, S., McAleer, S., Yan, R., & Baldi, P. (2018). Highly accurate machine fault diagnosis using deep transfer learning. IEEE Transactions on Industrial Informatics, 15(4), 2446–2455. https://doi.org/10.1109/TII.2018.2864759
Sheikh, M. A., Bakhsh, S. T., Irfan, M., Nor, N., bin, M., & Nowakowski, G. (2022). A review to diagnose faults related to three-phase industrial induction motors. Journal of Failure Analysis and Prevention, 22(4), 1546–1557. https://doi.org/10.1007/s11668-022-01445-2
Shen, C., Qi, Y., Wang, J., Cai, G., & Zhu, Z. (2018). An automatic and robust features learning method for rotating machinery fault diagnosis based on contractive autoencoder. Engineering Applications of Artificial Intelligence, 76, 170–184. https://doi.org/10.1016/j.engappai.2018.09.010
Singh, S., & Kumar, N. (2016). Detection of bearing faults in mechanical systems using stator current monitoring. IEEE Transactions on Industrial Informatics, 13(3), 1341–1349. https://doi.org/10.1109/TII.2016.2641470
Singh, M., & Shaik, A. G. (2019). Faulty bearing detection, classification and location in a three-phase induction motor based on Stockwell transform and support vector machine. Measurement, 131, 524–533. https://doi.org/10.1016/j.measurement.2018.09.013
Soualhi, A., Medjaher, K., & Zerhouni, N. (2014). Bearing health monitoring based on Hilbert-Huang transform, support vector machine, and regression. IEEE Transactions on Instrumentation and Measurement, 64(1), 52–62. https://doi.org/10.1109/TIM.2014.2330494
Souza, R. P. P., Agulhari, C. M., Goedtel, A., & Castoldi, M. F. (2022). Inter-turn short-circuit fault diagnosis using robust adaptive parameter estimation. International Journal of Electrical Power & Energy Systems, 139, 107999. https://doi.org/10.1016/j.ijepes.2022.107999
Sun, M., Wang, H., Liu, P., Huang, S., Wang, P., & Meng, J. (2021). Stack autoencoder transfer learning algorithm for bearing fault diagnosis based on class separation and domain fusion. IEEE Transactions on Industrial Electronics, 69(3), 3047–3058. https://doi.org/10.1109/TIE.2021.3066933
Sunal, C. E., Dyo, V., & Velisavljevic, V. (2022). Review of machine learning based fault detection for centrifugal pump induction motors. IEEE Access, 10, 71344–71355. https://doi.org/10.1109/ACCESS.2022.3187718
Tian, J., Morillo, C., Azarian, M. H., & Pecht, M. (2015). Motor bearing fault detection using spectral kurtosis-based feature extraction coupled with k-nearest neighbor distance analysis. IEEE Transactions on Industrial Electronics, 63(3), 1793–1803. https://doi.org/10.1109/TIE.2015.2509913
Tian, Z., Zuo, M. J., & Wu, S. (2012). Crack propagation assessment for spur gears using model-based analysis and simulation. Journal of Intelligent Manufacturing, 23(2), 239–253. https://doi.org/10.1007/s10845-009-0357-8
Wang, B., Hu, X., & Li, H. (2017a). Rolling bearing performance degradation condition recognition based on mathematical morphological fractal dimension and fuzzy c-means. Measurement, 109, 1–8. https://doi.org/10.1016/j.measurement.2017.05.033
Wang, B., Lei, Y., Li, N., & Li, N. (2018). A hybrid prognostics approach for estimating remaining useful life of rolling element bearings. IEEE Transactions on Reliability, 69(1), 401–412. https://doi.org/10.1109/TR.2018.2882682
Wang, G., Zhang, F., Cheng, B., & Fang, F. (2021). DAMER: A novel diagnosis aggregation method with evidential reasoning rule for bearing fault diagnosis. Journal of Intelligent Manufacturing, 32(1), 1–20. https://doi.org/10.1007/s10845-020-01554-5
Wang, J., Fu, P., Zhang, L., Gao, R. X., & Zhao, R. (2019a). Multilevel information fusion for induction motor fault diagnosis. IEEE/ASME Transactions on Mechatronics, 24(5), 2139–2150. https://doi.org/10.1109/TMECH.2019.2928967
Wang, J., Gao, R. X., Yuan, Z., Fan, Z., & Zhang, L. (2019b). A joint particle filter and expectation maximization approach to machine condition prognosis. Journal of Intelligent Manufacturing, 30(2), 605–621. https://doi.org/10.1007/s10845-016-1268-0
Wang, Q., Bu, S., & He, Z. (2020a). Achieving predictive and proactive maintenance for high-speed railway power equipment with LSTM-RNN. IEEE Transactions on Industrial Informatics, 16(10), 6509–6517. https://doi.org/10.1109/TII.2020.2966033
Wang, Q., Bu, S., He, Z., & Dong, Z. Y. (2020b). Toward the prediction level of situation awareness for electric power systems using CNN-LSTM network. IEEE Transactions on Industrial Informatics, 17(10), 6951–6961. https://doi.org/10.1109/TII.2020.3047607
Wang, Q., He, Z., Lin, S., & Li, Z. (2017b). Failure modeling and maintenance decision for GIS equipment subject to degradation and shocks. IEEE Transactions on Power Delivery, 32(2), 1079–1088. https://doi.org/10.1109/TPWRD.2017.2655010
Wang, Q., He, Z., Lin, S., & Liu, Y. (2017c). Availability and maintenance modeling for GIS equipment served in high-speed railway under incomplete maintenance. IEEE Transactions on Power Delivery, 33(5), 2143–2151. https://doi.org/10.1109/TPWRD.2017.2762367
Wang, S., Cai, G., Zhu, Z., Huang, W., & Zhang, X. (2015). Transient signal analysis based on Levenberg-Marquardt method for fault feature extraction of rotating machines. Mechanical Systems and Signal Processing, 54, 16–40. https://doi.org/10.1016/j.ymssp.2014.09.010
Wang, T., Liu, Z., & Mrad, N. (2020c). A probabilistic framework for remaining useful life prediction of bearings. IEEE Transactions on Instrumentation and Measurement, 70, 1–12. https://doi.org/10.1109/TIM.2020.3029382
Wang, W., & Pecht, M. (2010). Economic analysis of canary-based prognostics and health management. IEEE Transactions on Industrial Electronics, 58(7), 3077–3089. https://doi.org/10.1109/TIE.2010.2072897
Wang, X., Shen, C., Xia, M., Wang, D., Zhu, J., & Zhu, Z. (2020d). Multi-scale deep intra-class transfer learning for bearing fault diagnosis. Reliability Engineering & System Safety, 202, 107050. https://doi.org/10.1016/j.ress.2020.107050
Wang, Y., Zhou, J., Zheng, L., & Gogu, C. (2020e). An end-to-end fault diagnostics method based on convolutional neural network for rotating machinery with multiple case studies. Journal of Intelligent Manufacturing, 33(3), 809–830. https://doi.org/10.1007/s10845-020-01671-1
Wen, J., Bu, S., & Li, F. (2022). Two-level ensemble methods for efficient assessment and region visualization of maximal frequency deviation risk. IEEE Transactions on Power Systems, 38(1), 643–655. https://doi.org/10.1109/TPWRS.2022.3163716
Wu, J., Wu, C., Cao, S., Or, S., Deng, C., & Shao, X. (2018). Degradation data-driven time-to-failure prognostics approach for rolling element bearings in electrical machines. IEEE Transactions on Industrial Electronics, 66(1), 529–539. https://doi.org/10.1109/TIE.2018.2811366
Wu, Z., Jiang, H., Zhao, K., & Li, X. (2020). An adaptive deep transfer learning method for bearing fault diagnosis. Measurement, 151, 107227. https://doi.org/10.1016/j.measurement.2019.107227
Xia, P., Huang, Y., Li, P., Liu, C., & Shi, L. (2021). Fault knowledge transfer assisted ensemble method for remaining useful life prediction. IEEE Transactions on Industrial Informatics, 18(3), 1758–1769. https://doi.org/10.1109/TII.2021.3081595
Xiao, D., Qin, C., Yu, H., Huang, Y., & Liu, C. (2021). Unsupervised deep representation learning for motor fault diagnosis by mutual information maximization. Journal of Intelligent Manufacturing, 32(2), 377–391. https://doi.org/10.1007/s10845-020-01577-y
Yakhni, M. F., Cauet, S., Sakout, A., Assoum, H., Etien, E., Rambault, L., & El-Gohary, M. (2023). Variable speed induction motors’ fault detection based on transient motor current signatures analysis: A review. Mechanical Systems and Signal Processing, 184, 109737. https://doi.org/10.1016/j.ymssp.2022.109737
Yaman, O. (2021). An automated faults classification method based on binary pattern and neighborhood component analysis using induction motor. Measurement, 168, 108323. https://doi.org/10.1016/j.measurement.2020.108323
Yan, X., Liu, Y., & Jia, M. (2020). Multiscale cascading deep belief network for fault identification of rotating machinery under various working conditions. Knowledge-Based Systems, 193, 105484. https://doi.org/10.1016/j.knosys.2020.105484
Yang, B., Lee, C. G., Lei, Y., Li, N., & Lu, N. (2021). Deep partial transfer learning network: A method to selectively transfer diagnostic knowledge across related machines. Mechanical Systems and Signal Processing, 156, 107618. https://doi.org/10.1016/j.ymssp.2021.107618
Yang, F., Habibullah, M. S., Zhang, T., Xu, Z., Lim, P., & Nadarajan, S. (2016). Health index-based prognostics for remaining useful life predictions in electrical machines. IEEE Transactions on Industrial Electronics, 63(4), 2633–2644. https://doi.org/10.1109/TIE.2016.2515054
Yu, J. (2015). Machine health prognostics using the Bayesian-inference-based probabilistic indication and high-order particle filtering framework. Journal of Sound and Vibration, 358, 97–110. https://doi.org/10.1016/j.jsv.2015.08.013
Yu, J., & Yan, X. (2020). Multiscale intelligent fault detection system based on agglomerative hierarchical clustering using stacked denoising autoencoder with temporal information. Applied Soft Computing, 95, 106525. https://doi.org/10.1016/j.asoc.2020.106525
Yu, X., Liang, Z., Wang, Y., Yin, H., Liu, X., Yu, W., & Huang, Y. (2022). A wavelet packet transform-based deep feature transfer learning method for bearing fault diagnosis under different working conditions. Measurement, 201, 111597. https://doi.org/10.1016/j.measurement.2022.111597
Zamudio-Ramirez, I., Osornio-Rios, R. A., Antonino-Daviu, J. A., Razik, H., & Romero-Troncoso, R. (2021). Magnetic flux analysis for the condition monitoring of electric machines: A review. IEEE Transactions on Industrial Informatics, 18(5), 2895–2908. https://doi.org/10.1109/TII.2021.3070581
Zeng, F., Li, Y., Jiang, Y., & Song, G. (2021). An online transfer learning-based remaining useful life prediction method of ball bearings. Measurement, 176, 109201. https://doi.org/10.1016/j.measurement.2021.109201
Zhai, X., Qiao, F., Ma, Y., & Lu, H. (2022). A novel fault diagnosis method under dynamic working conditions based on a CNN with an adaptive learning rate. IEEE Transactions on Instrumentation and Measurement, 71, 1–12. https://doi.org/10.1109/TIM.2022.3177233
Zhang, J., Wang, Y., Zhu, K., Zhang, Y., & Li, Y. (2021a). Diagnosis of interturn short-circuit faults in permanent magnet synchronous motors based on few-shot learning under a federated learning framework. IEEE Transactions on Industrial Informatics, 17(12), 8495–8504. https://doi.org/10.1109/TII.2021.3067915
Zhang, Q., Tse, P.W.-T., Wan, X., & Xu, G. (2015). Remaining useful life estimation for mechanical systems based on similarity of phase space trajectory. Expert Systems with Applications, 42(5), 2353–2360. https://doi.org/10.1016/j.eswa.2014.10.041
Zhang, T., Chen, J., Li, F., Pan, T., & He, S. (2020a). A small sample focused intelligent fault diagnosis scheme of machines via multimodules learning with gradient penalized generative adversarial networks. IEEE Transactions on Industrial Electronics, 68(10), 10130–10141. https://doi.org/10.1109/TIE.2020.3028821
Zhang, W., Li, X., Ma, H., Luo, Z., & Li, X. (2021b). Transfer learning using deep representation regularization in remaining useful life prediction across operating conditions. Reliability Engineering & System Safety, 211, 107556. https://doi.org/10.1016/j.ress.2021.107556
Zhang, Y., Xing, K., Bai, R., Sun, D., & Meng, Z. (2020b). An enhanced convolutional neural network for bearing fault diagnosis based on time-frequency image. Measurement, 157, 107667. https://doi.org/10.1016/j.measurement.2020.107667
Zhao, B., Zhang, X., Zhan, Z., & Wu, Q. (2021). Deep multi-scale adversarial network with attention: A novel domain adaptation method for intelligent fault diagnosis. Journal of Manufacturing Systems, 59, 565–576. https://doi.org/10.1016/j.jmsy.2021.03.024
Zhao, M., Kang, M., Tang, B., & Pecht, M. (2017). Deep residual networks with dynamically weighted wavelet coefficients for fault diagnosis of planetary gearboxes. IEEE Transactions on Industrial Electronics, 65(5), 4290–4300. https://doi.org/10.1109/TIE.2017.2762639
Zhao, M., Zhong, S., Fu, X., Tang, B., & Pecht, M. (2019). Deep residual shrinkage networks for fault diagnosis. IEEE Transactions on Industrial Informatics, 16(7), 4681–4690. https://doi.org/10.1109/TII.2019.2943898
Zhou, Q., Yan, P., Liu, H., & Xin, Y. (2019). A hybrid fault diagnosis method for mechanical components based on ontology and signal analysis. Journal of Intelligent Manufacturing, 30(4), 1693–1715. https://doi.org/10.1007/s10845-017-1351-1
Zhu, R., Chen, Y., Peng, W., & Ye, Z.-S. (2022). Bayesian deep-learning for RUL prediction: An active learning perspective. Reliability Engineering & System Safety, 228, 108758. https://doi.org/10.1016/j.ress.2022.108758
Zhu, Z., Peng, G., Chen, Y., & Gao, H. (2019). A convolutional neural network based on a capsule network with strong generalization for bearing fault diagnosis. Neurocomputing, 323, 62–75. https://doi.org/10.1016/j.neucom.2018.09.050
Zou, Y., Liu, Y., Deng, J., Jiang, Y., & Zhang, W. (2021). A novel transfer learning method for bearing fault diagnosis under different working conditions. Measurement, 171, 108767. https://doi.org/10.1016/j.measurement.2020.108767
Acknowledgements
The work presented in this article is supported by Centre for Advances in Reliability and Safety (CAiRS) admitted under AIR@InnoHK Research Cluster. The authors are grateful to the reviewers for their valuable comments.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
Authors do not have financial or non-financial interests that are directly or indirectly related to the work submitted for publication.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Huang, C., Bu, S., Lee, H.H. et al. Prognostics and health management for induction machines: a comprehensive review. J Intell Manuf 35, 937–962 (2024). https://doi.org/10.1007/s10845-023-02103-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10845-023-02103-6