Skip to main content
Log in

Data-driven cymbal bronze alloy identification via evolutionary machine learning with automatic feature selection

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

This paper aims to implement four machine learning models using Differential Evolution to tune internal parameters and for feature selection in a problem involving the classification of drum cymbals according to their bronze alloys via their sound. In order to conduct the experiments, 276 audios referring to 4 cymbals were captured at a recording studio with a controlled environment and conditions. Then, 18 temporal attributes were extracted from each audio file, aiming to retrieve information from them. The experimental results show that the Extreme Gradient Boosting model combined with Differential Evolution for parameter tuning showed consistent results in all performance metrics. Furthermore, when this evolutionary algorithm selects the attributes, a considerable increase in performance is obtained, reaching 98.90% average accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aihara, T., & Ito, K. (2022). Relationship between chaotic vibrations and acoustic properties of percussion cymbals. Results in Engineering, 14, 100419. https://doi.org/10.1016/j.rineng.2022.100419

    Article  Google Scholar 

  • AKG. (2021). C414 XLII - Reference multipattern condenser microphone. Retrieved March 28, 2021 from https://www.akg.com/Microphones/Condenser%20Microphones/C414+XLII.html

  • Arlot, S., & Celisse, A. (2010). A survey of cross-validation procedures for model selection. Statistics Surveys, 4, 40–79.

    Article  Google Scholar 

  • Barandas, M., Folgado, D., Fernandes, L., Santos, S., Abreu, M., Bota, P., Liu, H., Schultz, T., & Gamboa, H. (2020). Tsfel: Time series feature extraction library. SoftwareX, 11, 100456.

    Article  Google Scholar 

  • Basilio, S. A., & Goliatt, L. (2022). Gradient boosting hybridized with exponential natural evolution strategies for estimating the strength of geopolymer self-compacting concrete. Knowledge-Based Engineering and Sciences, 3(1), 1–16.

    Article  Google Scholar 

  • Boratto, T., Cury, A., & Goliatt, L. (2022). A fuzzy approach to drum cymbals classification. IEEE Latin America Transactions, 20(9), 2172–2180. https://doi.org/10.1109/TLA.2022.9878173

    Article  Google Scholar 

  • Boratto, T. H., Cury, A., & Goliatt, L. (2022b). Crash cymbal sounds. https://data.mendeley.com/datasets/9tytvdxd24/1

  • Boratto, T. H. A., Marcomini, R. F., Goliatt, L., Pagotto, C. R., Cury, A. A., Pereira, I. J. U., & Nishida, F. D. (2021) Effects analysis of two differents cymbals manufacturing methods. In: 11th Congresso Brasileiro de Engenharia de Fabricação (COBEF), https://doi.org/10.26678/ABCM.COBEF2021.COB21-0164

  • Boussaïd, I., Lepagnot, J., & Siarry, P. (2013). A survey on optimization metaheuristics. Information Sciences, 237, 82–117.

    Article  Google Scholar 

  • Cavaco, S., & Almeida, H. (2012). Automatic cymbal classification using non-negative matrix factorization. In: 2012 19th International Conference on Systems, Signals and Image Processing (IWSSIP), pp. 468–471.

  • Chen, T., & He, T. (2015). Higgs boson discovery with boosted trees. In: NIPS 2014 workshop on high-energy physics and machine learning, pp. 69–80.

  • Claesen, M., & Moor, B. D. (2015). Hyperparameter search in machine learning. CoRR abs/1502.02127. arxiv:1502.02127

  • Crutchfield, J. P., & Feldman, D. P. (2003). Regularities unseen, randomness observed: Levels of entropy convergence. Chaos: An Interdisciplinary Journal of Nonlinear Science, 13(1), 25–54. https://doi.org/10.1063/1.1530990

    Article  Google Scholar 

  • Defazio, A., Bach, F., & Lacoste-Julien, S. (2014). Saga: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems, 27, 1.

    Google Scholar 

  • Di Giulio, G., Esposito, E., Santolini, C., & Scalise, L. (2001). Experimental vibrational analysis of drum cymbals. In: Proceedings of International Symposium on Musical Acoustics (ISMA2001), pp. 724–730.

  • Dokeroglu, T., Deniz, A., & Kiziloz, H. E. (2022). A comprehensive survey on recent metaheuristics for feature selection. Neurocomputing, 1, 1.

    Google Scholar 

  • El Bouchefry, K., & de Souza, R. S. (2020). Chapter 12 - learning in big data: Introduction to machine learning. In F. Adam (Ed.), Knowledge Discovery in Big Data from Astronomy and Earth Observation (pp. 225–249). Elsevier.

    Chapter  Google Scholar 

  • Fernández-Cerero, D., Troyano, J. A., Jakóbik, A., & Fernández-Montes, A. (2022). Machine learning regression to boost scheduling performance in hyper-scale cloud-computing data centres. Journal of King Saud University - Computer and Information Sciences, 34(6B), 3191–3203. https://doi.org/10.1016/j.jksuci.2022.04.008

    Article  Google Scholar 

  • Franco, V. R., Hott, M. C., Andrade, R. G., & Goliatt, L. (2022). Hybrid machine learning methods combined with computer vision approaches to estimate biophysical parameters of pastures. Evolutionary Intelligence, 1, 1–14.

    Google Scholar 

  • Friedman, J. H. (1991). Multivariate adaptive regression splines. The Annals of Statistics, 1, 1–67.

    Google Scholar 

  • Fu, H., Liu, H., Deng, X., & Sun, F. (2018). Wood material recognition for industrial applications. Systems Science & Control Engineering, 6(3), 346–358. https://doi.org/10.1080/21642583.2018.1553691

    Article  Google Scholar 

  • Gardner, M., & Dorling, S. (1998). Artificial neural networks (the multilayer perceptron)-a review of applications in the atmospheric sciences. Atmospheric Environment, 32(14), 2627–2636. https://doi.org/10.1016/S1352-2310(97)00447-0

    Article  Google Scholar 

  • Geron, A. (2017). Hands-on machine learning with Scikit-Learn and TensorFlow : concepts, tools, and techniques to build intelligent systems. Sebastopol, CA: O’Reilly Media.

    Google Scholar 

  • Giordano, B. L., & McAdams, S. (2006). Material identification of real impact sounds: Effects of size variation in steel, glass, wood, and plexiglass plates. The Journal of the Acoustical Society of America, 119(2), 1171–1181. https://doi.org/10.1121/1.2149839

    Article  Google Scholar 

  • Goliatt, L., & Yaseen, Z. M. (2023). Development of a hybrid computational intelligent model for daily global solar radiation prediction. Expert Systems with Applications, 212, 118295. https://doi.org/10.1016/j.eswa.2022.118295

    Article  Google Scholar 

  • Goliatt, L., Sulaiman, S. O., Khedher, K. M., Farooque, A. A., & Yaseen, Z. M. (2021). Estimation of natural streams longitudinal dispersion coefficient using hybrid evolutionary machine learning model. Engineering Applications of Computational Fluid Mechanics, 15(1), 1298–1320. https://doi.org/10.1080/19942060.2021.1972043

    Article  Google Scholar 

  • Guelman, L. (2012). Gradient boosting trees for auto insurance loss cost modeling and prediction. Expert Systems with Applications, 39(3), 3659–3667. https://doi.org/10.1016/j.eswa.2011.09.058

    Article  Google Scholar 

  • Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., & del Rıo JF, Wiebe M, Peterson P, G’erard-Marchant P, Sheppard K, Reddy T, Weckesser W, Abbasi H, Gohlke C, Oliphant TE,. (2020). Array programming with NumPy. Nature, 585(7825), 357–362. https://doi.org/10.1038/s41586-020-2649-2

  • Heddam, S., Yaseen, Z. M., Falah, M. W., Goliatt, L., Tan, M. L., Sa’adi, Z., Ahmadianfar, I., Saggi, M., Bhatia, A., & Samui, P. (2022). Cyanobacteria blue-green algae prediction enhancement using hybrid machine learning-based gamma test variable selection and empirical wavelet transform. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-022-21201-1

    Article  Google Scholar 

  • Herrera, P., Yeterian, A., & Gouyon, F. (2002). Automatic classification of drum sounds: A comparison of feature selection methods and classification techniques. In C. Anagnostopoulou, M. Ferrand, & A. Smaill (Eds.), Music and artificial intelligence (pp. 69–80). Heidelberg: Springer.

    Chapter  Google Scholar 

  • Hussain, K., Mohd Salleh, M. N., Cheng, S., & Shi, Y. (2019). Metaheuristic research: A comprehensive survey. Artificial Intelligence Review, 52(4), 2191–2233.

    Article  Google Scholar 

  • Ibrahem Ahmed Osman, A., Najah Ahmed, A., Chow, M. F., Feng Huang, Y., & El-Shafie, A. (2021). Extreme gradient boosting (xgboost) model to predict the groundwater levels in Selangor, Malaysia. Ain Shams Engineering Journal, 12(2), 1545–1556.

    Article  Google Scholar 

  • Ikram, R. M. A., Goliatt, L., Kisi, O., Trajkovic, S., & Shahid, S. (2022). Covariance matrix adaptation evolution strategy for improving machine learning approaches in streamflow prediction. Mathematics, 10, 16. https://doi.org/10.3390/math10162971

    Article  Google Scholar 

  • Javh, J., Slavič, J., & Boltežar, M. (2017). The subpixel resolution of optical-flow-based modal analysis. Mechanical Systems and Signal Processing, 88, 89–99. https://doi.org/10.1016/j.ymssp.2016.11.009

    Article  Google Scholar 

  • Kannan, S. S., Jo, W., Parasuraman, R., & Min, B. C. (2020). Material mapping in unknown environments using tapping sound. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4855–4861. https://doi.org/10.1109/IROS45743.2020.9341346

  • Kaselouris, E., Alexandraki, C., Bakarezos, M., Tatarakis, M., Papadogiannis, N., & Dimitriou, V. (2022). A detailed fem study on the vibro-acoustic behaviour of crash and splash musical cymbals. International Journal of Circuits, Systems and Signal Processing, 16, 948–955.https://doi.org/10.46300/9106.2022.16.116

  • Keleş, S., Günlü, A., & Ercanli, I. (2021). Estimating aboveground stand carbon by combining sentinel-1 and sentinel-2 satellite data: A case study from turkey. In: Forest Resources Resilience and Conflicts. Elsevier, pp. 117–126.

  • Kim, H., & Lee, T. H. (2021). A robust elastic net via bootstrap method under sampling uncertainty for significance analysis of high-dimensional design problems. Knowledge-Based Systems, 225, 107117. https://doi.org/10.1016/j.knosys.2021.107117

    Article  Google Scholar 

  • Knees, P., & Schedl, M. (2015). Music retrieval and recommendation: A tutorial overview. Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval.

  • Kumar, V., & Minz, S. (2014). Feature selection: A literature review. SmartCR, 4(3), 211–229.

    Article  Google Scholar 

  • Kuratani, F., Yoshida, T., Koide, T., Mizuta, T., & Osamura, K. (2016). Understanding the effect of hammering process on the vibration characteristics of cymbals. Journal of Physics: Conference Series, 744, 012110. https://doi.org/10.1088/1742-6596/744/1/012110

    Article  Google Scholar 

  • Lee, S. I., Lee, H., Abbeel, P., & Ng, A. (2006). Efficient l1 regularized logistic regression. In: Proceedings of the 21st National Conference on Artificial Intelligence (AAAI-06), vol. 21.

  • Liu, J., Bai, M., Jiang, N., Cheng, R., Li, X., Wang, Y., & Yu, D. (2021). Interclass interference suppression in multi-class problems. Applied Sciences, 11, 1.

    Google Scholar 

  • Lopez-Caudana, E., Quiroz, O., Rodríguez, A., Yépez, L., & Ibarra, D. (2017). Classification of materials by acoustic signal processing in real time for NAO robots. International Journal of Advanced Robotic Systems, 14(4), 1729881417714996. https://doi.org/10.1177/1729881417714996

    Article  Google Scholar 

  • Martinho, A. D., Ribeiro, C. B. M., Gorodetskaya, Y., Fonseca, T. L., & Goliatt, L. (2020). Extreme learning machine with evolutionary parameter tuning applied to forecast the daily natural flow at Cahora Bassa dam, Mozambique. In B. Filipič, E. Minisci, & M. Vasile (Eds.), Bioinspired optimization methods and their applications (pp. 255–267). Cham: Springer.

    Chapter  Google Scholar 

  • Wes, M. (2010). Data Structures for Statistical Computing in Python. In: S. van der Walt, J. Millman (eds) Proceedings of the 9th Python in Science Conference, pp. 56–61. https://doi.org/10.25080/Majora-92bf1922-00a

  • Müller, M. (2015). Fundamentals of Music Processing. Springer International Publishing. https://doi.org/10.1007/978-3-319-21945-5

    Article  Google Scholar 

  • Ng, A. Y. (2004). Feature selection, l1 vs. l2 regularization, and rotational invariance. In: Proceedings of the Twenty-First International Conference on Machine Learning, Association for Computing Machinery, New York, USA, ICML ’04, p 78, https://doi.org/10.1145/1015330.1015435.

  • Nguyen, Q., & Touzé, C. (2019). Nonlinear vibrations of thin plates with variable thickness: Application to sound synthesis of cymbals. The Journal of the Acoustical Society of America, 145, 977–988. https://doi.org/10.1121/1.5091013

    Article  Google Scholar 

  • Ogawa, W., Kuratani, F., Yoshida, T., Koide, T., & Mizuta, T. (2020). Effect of bell size on sound characteristics of cymbals. Transactions of the JSME, 86(881), 1900237–1900237. https://doi.org/10.1299/transjsme.19-00237

    Article  Google Scholar 

  • Osamura, K., Kuratani, F., Koide, T., Ogawa, W., Taniguchi, H., Monju, Y., Mizuta, T., & Shobu, T. (2016). The correlation between the percussive sound and the residual stress/strain distributions in a cymbal. Journal of Materials Engineering and Performance, 25, 1. https://doi.org/10.1007/s11665-016-2408-6

    Article  Google Scholar 

  • Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al. (2011). Scikit-learn: Machine learning in python. The Journal of Machine Learning Research, 12, 2825–2830.

    Google Scholar 

  • Perrin, R., Swallowe, G., Zietlow, S., & Moore, T. (2008). Normal modes of cymbals. Proceedings of the Institute of Acoustics

  • Pinksterboer, H., & Mattingly, R. (1992). The Cymbal Book. Musical Instruments SeriesHal Leonard Publishing Corporation.

    Google Scholar 

  • Rossing, T. (2014). Springer handbook of acoustics (2nd ed.). New York: Springer Handbooks.

    Book  Google Scholar 

  • Saporetti, C., Fonseca, D., Oliveira, L., Pereira, E., & Goliatt, L. (2022). Hybrid machine learning models for estimating total organic carbon from mineral constituents in core samples of shale gas fields. Marine and Petroleum Geology, p. 105783, https://doi.org/10.1016/j.marpetgeo.2022.105783

  • Saporetti, C. M., da Fonseca, L. G., & Pereira, E. (2019). A lithology identification approach based on machine learning with evolutionary parameter tuning. IEEE Geoscience and Remote Sensing Letters, 16(12), 1819–1823. https://doi.org/10.1109/LGRS.2019.2911473

    Article  Google Scholar 

  • Seabold, S., & Perktold, J. (2010). statsmodels: Econometric and statistical modeling with python. In: 9th Python in Science Conference.

  • Shure. (2021). PGA81 - Microfone condensador cardioide para instrumento. Retrieved April 02, 2021 from https://www.shure.com/pt-BR/produtos/microfones/pga81

  • Slamet, S., Suyitno, S., Kusumaningtyas, I., & Miasa, I. (2021). Effect of high-tin bronze composition on physical, mechanical, and acoustic properties of gamelan materials. Archives of Foundry Engineering, 21, 137–145. https://doi.org/10.24425/afe.2021.136090

    Article  Google Scholar 

  • Souza, D. P., Martinho, A. D., Rocha, C. C., Christo, Ed. S., & Goliatt, L. (2022). Group method of data handling to forecast the daily water flow at the Cahora Bassa dam. Acta Geophysica, 1, 1–13.

    Google Scholar 

  • Souza, V. M. A., Batista, G. E. A. P. A., Souza-Filho, N. E. (2015). Automatic classification of drum sounds with indefinite pitch. In: Proceedings of International Joint Conference on Neural Networks (IJCNN).

  • Storn, R., & Price, K. (1997). Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11(4), 341–359.

    Article  Google Scholar 

  • Su, M., & Wang, W. (2021). Elastic net penalized quantile regression model. Journal of Computational and Applied Mathematics, 392, 113462. https://doi.org/10.1016/j.cam.2021.113462

    Article  Google Scholar 

  • Sugita, I. K. G., & Priambadi, I. G. N. (2017). The study of dendrite arm spacing (das) on acoustical of tin bronze 20sn alloy as gamelan bali materials. Engineering and Innovative Materials V, Trans Tech Publications Ltd, Materials Science Forum, 889, 133–137. https://doi.org/10.4028/www.scientific.net/MSF.889.133

  • Pandas Development Team, T. (2020). pandas-dev/pandas: Pandas. https://doi.org/10.5281/zenodo.3509134

  • Vapnik, V. N. (1998). Statistical Learning Theory. Wiley-Interscience.

    Google Scholar 

  • Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey CJ, Polat I, Feng Y, Moore EW, VanderPlas J, Laxalde D, Perktold J, Cimrman R, Henriksen I, Quintero EA, Harris CR, Archibald AM, Ribeiro AH, Pedregosa F, van Mulbregt P, SciPy 10 Contributors,. (2020). SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17, 261–272.

  • White, M. A., & MacMillan, P. (2002). The cymbal as an instructional device for materials education. MRS Proceedings, 760(JJ1), 6. https://doi.org/10.1557/PROC-760-JJ1.6

    Article  Google Scholar 

  • Wu, Z., Li, J., Cai, M., Lin, Y., & Zhang, W. (2016). On membership of black-box or white-box of artificial neural network models. In: 2016 IEEE 11th conference on industrial electronics and applications (ICIEA), IEEE, pp. 1400–1404.

  • Yusta, S. C. (2009). Different metaheuristic strategies to solve the feature selection problem. Pattern Recognition Letters, 30(5), 525–534.

    Article  Google Scholar 

  • Zhang, J., Niu, Q., Li, K., & Irwin, G. W. (2011). Model selection in svms using differential evolution. IFAC Proceedings Volumes, 44(1), 14717–14722. https://doi.org/10.3182/20110828-6-IT-1002.00584. www.sciencedirect.com/science/article/pii/S1474667016459938, 18th IFAC World Congress

  • Zhang, W., Yang, G., Lin, Y., Ji, C., & Gupta, M. M. (2018). On definition of deep learning. In: 2018 World Automation Congress (WAC), pp 1–5, https://doi.org/10.23919/WAC.2018.8430387

Download references

Acknowledgements

The authors acknowledge the ARGUS studio for its support in the data acquisition procedure. The authors thank the anonymous reviewers for their valuable contributions to this paper.

Funding

The authors acknowledge the Brazilian funding agencies CNPq (429639/2016-3 and 304329/2019-3), FAPEMIG (APQ-00334/18 and PPM-00001-18), and CAPES - Finance Code 001 for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Goliatt.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Data and code availability

Source codes are made available by the authors upon request. The audio database is free and available on the Mendeley Data Repository(https://data.mendeley.com/datasets/9tytvdxd24/1) [7].

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boratto, T.H.A., Saporetti, C.M., Basilio, S.C.A. et al. Data-driven cymbal bronze alloy identification via evolutionary machine learning with automatic feature selection. J Intell Manuf 35, 257–273 (2024). https://doi.org/10.1007/s10845-022-02047-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-022-02047-3

Keywords

Navigation