Skip to main content
Log in

Enhanced cuckoo search algorithm for industrial winding process modeling

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

Modeling of nonlinear industrial systems embraces two key stages: selection of a model structure with a compact parameter list, and selection of an algorithm to estimate the parameter list values. Thus, there is a need to develop a sufficiently adequate model to characterize the behavior of industrial systems to represent experimental data sets. The data collected for many industrial systems may be subject to the existence of high non-linearity and multiple constraints. Meanwhile, creating a thoroughgoing model for an industrial process is essential for model-based control systems. In this work, we explore the use of a proposed Enhanced version of the Cuckoo Search (ECS) algorithm to address a parameter estimation problem for both linear and nonlinear model structures of a real winding process. The performance of the developed models was compared with other mainstream meta-heuristics when they were targeted to model the same process. Moreover, these models were compared with other models developed based on some conventional modeling methods. Several evaluation tests were performed to judge the efficiency of the developed models based on ECS, which showed superior performance in both training and testing cases over that achieved by other modeling methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. http://www.mathworks.co.uk/matlabcentral/fileexchange/29809-cuckoo-search-cs-algorithm.

References

  • Akaike, H., Petrov, B. N., & Csaki, F. (1973). Second international symposium on information theory.

  • Al-Hiary, H., Braik, M., Sheta, A., & Ayesh, A. (2008). Identification of a chemical process reactor using soft computing techniques. In IEEE international conference on fuzzy systems, 2008. FUZZ-IEEE 2008. (IEEE world congress on computational intelligence) (pp. 845–853). IEEE.

  • Ayough, A., & Khorshidvand, B. (2019). Designing a manufacturing cell system by assigning workforce. Journal of Industrial Engineering and Management, 12(1), 13–26.

    Google Scholar 

  • Aziz, M. A. E., & Hassanien, A. E. (2018). Modified cuckoo search algorithm with rough sets for feature selection. Neural Computing and Applications, 29(4), 925–934.

    Article  Google Scholar 

  • Babuska, R. (1998). Fuzzy modeling and identification toolbox, 204. Delft University of Technology, The Netherland. http://lcewww.et.tudelft.nl/bubuska

  • Babuška, R., & Verbruggen, H. (2003). Neuro-fuzzy methods for nonlinear system identification. Annual Reviews in Control, 27(1), 73–85.

    Article  Google Scholar 

  • Braatz, R. D., Ogunnaike, B. A., & Featherstone, A. P. (1996). Identification, estimation, and control of sheet and film processes. IFAC Proceedings Volumes, 29(1), 6638–6643.

    Article  Google Scholar 

  • Braik, M. (2021). A hybrid multi-gene genetic programming with capuchin search algorithm for modeling a nonlinear challenge problem: Modeling industrial winding process, case study. Neural Processing Letters, 1–44.

  • Braik, M., Al-Zoubi, H., & Al-Hiary, H. (2021). Artificial neural networks training via bio-inspired optimisation algorithms: Modelling industrial winding process, case study. Soft Computing, 25(6), 4545–4569.

    Article  Google Scholar 

  • Braik, M., Sheta, A., & Arieqat, A. (2008). A comparison between GAs and PSO in training ANN to model the TE chemical process reactor. In Proceedings of the AISB 2008 convention in communication, interaction and social intelligence (Vol. 1, pp. 24).

  • Braik, M., Sheta, A., Turabieh, H., & Alhiary, H. (2021). A novel lifetime scheme for enhancing the convergence performance of salp swarm algorithm. Soft Computing, 25(1), 181–206.

    Article  Google Scholar 

  • Chang, Y.-W., Hsieh, C.-J., Chang, K.-W., Ringgaard, M., & Lin, C.-J. (2010). Training and testing low-degree polynomial data mappings via linear svm. Journal of Machine Learning Research, 11(Apr), 1471–1490.

    Google Scholar 

  • Chicco, D., Warrens, M. J., & Jurman, G. (2021). The coefficient of determination r-squared is more informative than smape, mae, mape, mse and rmse in regression analysis evaluation. PeerJ Computer Science, 7, e623.

    Article  Google Scholar 

  • Chu, X., Nian, X., Liu, J., & Liao, Y. (2017). Robust fault detection for multi-motor winding system based on disturbance observer and sliding-mode observer. In 2017 11th Asian control conference (ASCC) (pp. 1519–1524). IEEE.

  • Cross, P., & Ma, X. (2014). Nonlinear system identification for model-based condition monitoring of wind turbines. Renewable Energy, 71, 166–175.

    Article  Google Scholar 

  • Dao, S. D., Abhary, K., & Marian, R. (2017). Optimisation of assembly scheduling in vcim systems using genetic algorithm. Journal of Industrial Engineering International, 13(3), 275–296.

    Article  Google Scholar 

  • Dixit, S. R., Das, S. R., & Dhupal, D. (2019). Parametric optimization of nd: Yag laser microgrooving on aluminum oxide using integrated rsm-ann-ga approach. Journal of Industrial Engineering International, 15(2), 333–349.

    Article  Google Scholar 

  • Faris, H., & Sheta, A. (2013). Identification of the tennessee eastman chemical process reactor using genetic programming. International Journal of Advanced Science and Technology, 50, 121–140.

    Google Scholar 

  • Faris, H., Sheta, A., & Öznergiz, E. (2013). Modelling hot rolling manufacturing process using soft computing techniques. International Journal of Computer Integrated Manufacturing, 26(8), 762–771.

    Article  Google Scholar 

  • Faris, H., Sheta, A. F., & Öznergiz, E. (2016). Mgp-cc: A hybrid multigene gp-cuckoo search method for hot rolling manufacture process modelling. Systems Science and Control Engineering, 4(1), 39–49.

    Article  Google Scholar 

  • Friedman, M. (1937). The use of ranks to avoid the assumption of normality implicit in the analysis of variance. Journal of the American Statistical Association, 32(200), 675–701.

    Article  Google Scholar 

  • Gandomi, A. H., Yang, X.-S., & Alavi, A. H. (2013). Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems. Engineering with Computers, 29(1), 17–35.

    Article  Google Scholar 

  • Guidorzi, R. (2003). Multivariable system identification: From observations to models. Bologna: Bononia University Press.

    Google Scholar 

  • Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 65–70.

  • Hussian, A., Sheta, A., Kamel, M., Telbaney, M., & Abdelwahab, A. (2000). Modeling of a winding machine using genetic programming. In Proceedings of the 2000 congress on evolutionary computation, 2000 (Vol. 1, pp. 398–402). IEEE.

  • İnci, M., & Caliskan, A. (2020). Performance enhancement of energy extraction capability for fuel cell implementations with improved cuckoo search algorithm. International Journal of Hydrogen Energy, 45(19), 11309–11320.

    Article  Google Scholar 

  • Jain, M., Singh, V., & Rani, A. (2019). A novel nature-inspired algorithm for optimization: Squirrel search algorithm. Swarm and Evolutionary Computation, 44, 148–175.

    Article  Google Scholar 

  • Kamrani, E. (2010). Modeling and forecasting long-term natural gas (ng) consumption in Iran, using particle swarm optimization (pso).

  • Karthik, G. V. S. K., & Deb, S. (2018). A methodology for assembly sequence optimization by hybrid cuckoo-search genetic algorithm. Journal of Advanced Manufacturing Systems, 17(01), 47–59.

    Article  Google Scholar 

  • Lennart, L. (1994). From data to model: A guided tour of system identification.

  • Ljung, L. (1987). Theory for the user. New York: Prentice Hall.

    Google Scholar 

  • Mello, R. G. T., Oliveira, L. F., & Nadal, J. (2007). Digital butterworth filter for subtracting noise from low magnitude surface electromyogram. Computer Methods and Programs in Biomedicine, 87(1), 28–35.

    Article  Google Scholar 

  • Mirjalili, S. (2016). Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Computing and Applications, 27(4), 1053–1073.

    Article  Google Scholar 

  • Moslemipour, G. (2018). A hybrid cs-sa intelligent approach to solve uncertain dynamic facility layout problems considering dependency of demands. Journal of Industrial Engineering International, 14(2), 429–442.

    Article  Google Scholar 

  • Mousavi, S. H., Nazemi, A., & Hafezalkotob, A. (2015). Using and comparing metaheuristic algorithms for optimizing bidding strategy viewpoint of profit maximization of generators. Journal of Industrial Engineering International, 11(1), 59–72.

    Article  Google Scholar 

  • Nelles, O. (2002). Nonlinear system identification.

  • Nikabadi, M., & Naderi, R. (2016). A hybrid algorithm for unrelated parallel machines scheduling. International Journal of Industrial Engineering Computations, 7(4), 681–702.

    Article  Google Scholar 

  • Noura, H., Theilliol, D., Ponsart, J.-C., & Chamseddine, A. (2009). Fault-tolerant control systems: Design and practical applications. Berlin: Springer.

    Book  Google Scholar 

  • Nozari, H. A., Banadaki, H. D., Mokhtare, M., & Vahed, S. H. (2012). Intelligent non-linear modelling of an industrial winding process using recurrent local linear neuro-fuzzy networks. Journal of Zhejiang University SCIENCE C, 13(6), 403–412.

    Article  Google Scholar 

  • Ogunjuyigbe, A. S. O., Ayodele, T. R., & Adetokun, B. B. (2018). Modelling and analysis of dual stator-winding induction machine using complex vector approach. International Journal Engineering Science and Technology, 21(3), 351–363.

    Google Scholar 

  • Öznergiz, E., Özsoy, C., Delice, I. I., & Kural, A. (2009). Comparison of empirical and neural network hot-rolling process models. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 223(3), 305–312.

    Article  Google Scholar 

  • Parant, F., Coeffier, C., & Iung, C. (1992). Modeling of web tension in a continuous annealing line. Iron and Steel Engineer (USA), 69(11), 46–49.

    Google Scholar 

  • Pascual, D. G. (2015). Artificial intelligence tools: Decision support systems in condition monitoring and diagnosis. New York: CRC Press.

    Book  Google Scholar 

  • Pavlyukevich, I. (2007). Lévy flights, non-local search and simulated annealing. Journal of Computational Physics, 226(2), 1830–1844.

    Article  Google Scholar 

  • Pereira, I., Madureira, A., & e Silva, E.C., & Abraham, A. (2021). A hybrid metaheuristics parameter tuning approach for scheduling through racing and case-based reasoning. Applied Sciences, 11(8), 3325.

  • Quinn, T. J., & Deriso, R. B. (1999). Quantitative fish dynamics. Oxford: Oxford university Press.

    Google Scholar 

  • Reynolds, A. M., & Frye, M. A. (2007). Free-flight odor tracking in drosophila is consistent with an optimal intermittent scale-free search. PLOS ONE, 2(4), e354.

    Article  Google Scholar 

  • Sadati, N., Chinnam, R. B., & Nezhad, M. Z. (2018). Observational data-driven modeling and optimization of manufacturing processes. Expert Systems with Applications, 93, 456–464.

    Article  Google Scholar 

  • Santillan, J. H., Tapucar, S., Manliguez, C., & Calag, V. (2018). Cuckoo search via lévy flights for the capacitated vehicle routing problem. Journal of Industrial Engineering International, 14(2), 293–304.

    Article  Google Scholar 

  • Schlei-Peters, I., Wichmann, M. G., Matthes, I.-G., Gundlach, F.-W., & Spengler, T. S. (2008). Integrated material flow analysis and process modeling to increase energy and water efficiency of industrial cooling water systems. Journal of Industrial Ecology, 22(1), 41–54.

    Article  Google Scholar 

  • Sheta, A., Braik, M., & Al-Hiary, H. (2019). Modeling the tennessee eastman chemical process reactor using bio-inspired feedforward neural network (bi-ff-nn). The International Journal of Advanced Manufacturing Technology, 1–22.

  • Sheta, A.F., Braik, M., & Al-Hiary, H. (2009). Identification and model predictive controller design of the Tennessee Eastman Chemical Process using ANN. In Proceedings of the international conference on artificial intelligence (ICAI’09), July 13–16, USA, (Vol. 1, pp. 25–31).

  • Sheta, A.F., Braik, M., Öznergiz, E., Ayesh, A., & Masud, M. (2013). Design and automation for manufacturing processes: An intelligent business modeling using adaptive neuro-fuzzy inference systems. In Business intelligence and performance management (pp. 191–208). Springer.

  • Shlesinger, M. F. (2006). Mathematical physics: Search research. Nature, 443(7109), 281.

    Article  Google Scholar 

  • Sievers, L., Balas, M. J., & von Flotow, A. (1988). Modeling of web conveyance systems for multivariable control. IEEE Transactions on Automatic Control, 33(6), 524–531.

    Article  Google Scholar 

  • Tahmassebi, A., & Gandomi, A. H. (2018). Building energy consumption forecast using multi-objective genetic programming. Measurement, 118, 164–171.

    Article  Google Scholar 

  • Torres, P. J. R., Mercado, E. S., & Rifón, L. A. (2018). Probabilistic Boolean network modeling of an industrial machine. Journal of Intelligent Manufacturing, 29(4), 875–890.

    Article  Google Scholar 

  • Van Welden, D. (2000). Induction of predictive models for dynamical systems via data mining. Ph.d thesis, Ghent University.

  • Wasserman, L. (2000). Bayesian model selection and model averaging. Journal of Mathematical Psychology, 44(1), 92–107.

    Article  Google Scholar 

  • Wei, Y., Qiu, J., Lam, H.-K., & Ligang, W. (2017). Approaches to t-s fuzzy-affine-model-based reliable output feedback control for nonlinear ito stochastic systems. IEEE Transactions on fuzzy systems, 25(3), 569–583.

    Article  Google Scholar 

  • Willmott, C. J., & Matsuura, K. (2005). Advantages of the mean absolute error (mae) over the root mean square error (rmse) in assessing average model performance. Climate Research, 30(1), 79–82.

    Article  Google Scholar 

  • Yang, X.-S., & Deb, S. (2009). Cuckoo search via lévy flights. In Nature and biologically inspired computing, 2009. NaBIC 2009. world congress on (pp. 210–214). IEEE.

  • Yang, X.-S., & Deb, S. (2010). Engineering optimisation by cuckoo search. International Journal of Mathematical Modelling and Numerical Optimisation, 1(4), 330–343.

    Article  Google Scholar 

  • Yang, X.-S., & Deb, S. (2014). Cuckoo search: Recent advances and applications. Neural Computing and Applications, 24(1), 169–174.

    Article  Google Scholar 

  • Yıldız, A. R. (2008) Hybrid taguchi-harmony search algorithm for solving engineering optimization problems. International Journal of Industrial Engineering, 15(3), 286–293.

  • Zadeh, L. (1956). On the identification problem. IRE Transactions on Circuit Theory, 3(4), 277–281.

    Article  Google Scholar 

  • Zhang, Z., Hong, W.-C., & Li, J. (2020). Electric load forecasting by hybrid self-recurrent support vector regression model with variational mode decomposition and improved cuckoo search algorithm. IEEE Access, 8, 14642–14658.

    Article  Google Scholar 

  • Zingg, D. W., Nemec, M., & Pulliam, T. H. (2008). A comparative evaluation of genetic and gradient-based algorithms applied to aerodynamic optimization. European Journal of Computational Mechanics/Revue Européenne de Mécanique Numérique, 17(1–2), 103–126.

    Google Scholar 

  • Zucchini, W. (2000). An introduction to model selection. Journal of Mathematical Psychology, 44(1), 41–61.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Taif University Researchers Supporting Project Number (TURSP-2020/73), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alaa Sheta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Braik, M., Sheta, A., Al-Hiary, H. et al. Enhanced cuckoo search algorithm for industrial winding process modeling. J Intell Manuf 34, 1911–1940 (2023). https://doi.org/10.1007/s10845-021-01900-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-021-01900-1

Keywords

Navigation