Skip to main content
Log in

Hybrid data augmentation method for combined failure recognition in rotating machines

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

Rotating machines are frequently subject to a wide range of rough conditions, resulting in mechanical failures and performance degradation. Thus, it is important to apply proper failure detection and recognition techniques, such as machine learning algorithms, to prevent these issues early. In industrial environments, little data exists regarding failure conditions, which hinders the training stage of the classification algorithms responsible for classifying the failures. Therefore, this work proposes a hybrid method of data augmentation to increase the number of minority class instances in order to improve classifier performance. The approach combines the synthetic minority over-sampling and the additive white Gaussian noise techniques to create a set of artificial signals. The results show that the proposal is able to achieve better results than applying those techniques separately and also when using an undersampling strategy. For comparison purposes, four machine learning classification methods were analyzed alongside our data augmentation proposal, namely, support vector machines, K-nearest neighbors, random forest and stacked sparse autoencoder. The proposed hybrid data augmentation method associated with stacked sparse autoencoder outperformed the other models obtaining an accuracy of 100% and a processing time of 0.13 s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  • Aggarwal, C. C., et al. (2018). Neural Networks and Deep Learning. Berlin: Springer.

    Book  Google Scholar 

  • Ali, M.A., Bingamil, A.A., Jarndal, A., Alsyouf, I. (2019). The influence of handling imbalance classes on the classification of mechanical faults using neural networks. In 2019 8th International Conference on Modeling Simulation and Applied Optimization (ICMSAO), Manama, Bahrain, pp 1–5. https://doi.org/10.1109/ICMSAO.2019.8880437.

  • Aouedi, O., Piamrat, K., Bagadthey, D. (2020). A semi-supervised stacked autoencoder approach for network traffic classification. In 2020 IEEE 28th International Conference on Network Protocols (ICNP), Madrid, Spain, pp 1–6, https://doi.org/10.1109/ICNP49622.2020.9259390.

  • Arslan, M., Guzel, M., Demirci, M., Ozdemir, S. (2019). SMOTE and gaussian noise based sensor data augmentation. In 2019 4th International Conference on Computer Science and Engineering (UBMK), Samsun, Turkey, pp 1–5. https://doi.org/10.1109/UBMK.2019.8907003.

  • Asadi, R., Mustapha, N., Sulaiman, N., & Shiri, N. (2009). New supervised multi layer feed forward neural network model to accelerate classification with high accuracy. European Journal of Scientific Research, 33(1), 163–178.

    Google Scholar 

  • Bai, C, Ganeriwala, S.S., Sawalhi, N. (2019). A rational basis for determining vibration signature of shaft/coupling misalignment in rotating machinery. In Rotating Machinery, Vibro-Acoustics & Laser Vibrometry, Volume 7, Florida, USA, pp 207–217. https://doi.org/10.1007/978-3-319-74693-7_20.

  • Bloch, H. P., & Geitner, F. K. (2005). Machinery Component Maintenance and Repair. Amsterdam: Elsevier.

    Google Scholar 

  • Bramer, M. (2007). Principles of Data Mining (Vol. 180). Berlin: Springer.

    Google Scholar 

  • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324

    Article  Google Scholar 

  • Burks, R., Islam, K.A., Lu, Y., Li, J. (2019). Data augmentation with generative models for improved malware detection: A comparative study. In 2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), New York, USA, pp 0660–0665. https://doi.org/10.1109/UEMCON47517.2019.8993085.

  • Canbaz, H., Polat, K. (2019). Fault detection of cnc machines from vibration signals using machine learning methods. In The International Conference on Artificial Intelligence and Applied Mathematics in Engineering, Antalya, Turkey, pp 365–374. https://doi.org/10.1007/978-3-030-36178-5_27.

  • Cerrada, M. (2018). A review on data-driven fault severity assessment in rolling bearings. Mechanical Systems and Signal Processing. https://doi.org/10.1016/j.ymssp.2017.06.012

    Article  Google Scholar 

  • Chang, Y. W., Hsieh, C. J., Chang, K. W., Ringgaard, M., & Lin, C. J. (2010). Training and testing low-degree polynomial data mappings via linear SVM. Journal of Machine Learning Research, 11(4), 1471–1490.

    Google Scholar 

  • Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 16(1), 321–357. https://doi.org/10.1613/jair.953

    Article  Google Scholar 

  • Cheng, K., Zhang, C., Yu, H., Yang, X., Zou, H., & Gao, S. (2019). Grouped SMOTE with noise filtering mechanism for classifying imbalanced data. IEEE Access, 7(1), 170668–170681. https://doi.org/10.1109/ACCESS.2019.2955086

    Article  Google Scholar 

  • Choubin, B., Moradi, E., Golshan, M., Adamowski, J., Sajedi-Hosseini, F., & Mosavi, A. (2019). An ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machines. Science of The Total Environment, 651(1), 2087–2096. https://doi.org/10.1016/j.scitotenv.2018.10.064

    Article  Google Scholar 

  • Dal Pozzolo, A., Caelen, O., Bontempi, G. (2015). When is undersampling effective in unbalanced classification tasks? In Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Porto, Portugal, pp 200–215. https://doi.org/10.1007/978-3-319-23528-8_13.

  • Dekhane, A., Djellal, A., Boutebbakh, F., Lakel, R. (2020). Cooling fan combined fault vibration analysis using convolutional neural network classifier. In Proceedings of the 3rd International Conference on Networking, Information Systems & Security, New York, USA, pp 1–6. https://doi.org/10.1145/3386723.3387898.

  • Desouki, M., Sassi, S., Renno, J., & Gowid, S. A. (2020). Dynamic response of a rotating assembly under the coupled effects of misalignment and imbalance. Shock and Vibration, 1, 1070–9622. https://doi.org/10.1155/2020/8819676

    Article  Google Scholar 

  • de Lima, A.A., Prego, T.D.M., Netto, S.L., da Silva, E.A., Gutierrez, R.H., Monteiro, U.A., Troyman, A.C., Silveira, F.J.D.C., Vaz, L. (2013). On fault classification in rotating machines using fourier domain features and neural networks. In 2013 IEEE 4th Latin American Symposium on Circuits and Systems (LASCAS), Cusco, Peru, pp 1–4. https://doi.org/10.1109/LASCAS.2013.6518984.

  • Dhamande, L. S., & Chaudhari, M. B. (2018). Compound gear-bearing fault feature extraction using statistical features based on time-frequency method. Measurement, 125(1), 63–77. https://doi.org/10.1016/j.measurement.2018.04.059

    Article  Google Scholar 

  • Diniz, P. S., Da Silva, E. A., & Netto, S. L. (2010). Digital Signal Processing: System Analysis and Design. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Dinov, I. D. (2018). Data Science and Predictive Analytics: Biomedical and Health Applications Using R. Berlin: Springer.

    Book  Google Scholar 

  • Djagarov, N., Grozdev, Z., Enchev, G., Djagarov, J. (2019). Ship’s induction motors fault diagnosis. In 2019 16th Conference on Electrical Machines, Drives and Power Systems (ELMA), Varna, Bulgaria, pp 1–4. https://doi.org/10.1109/ELMA.2019.8771525.

  • Elangovan, M., Sugumaran, V., Ramachandran, K., & Ravikumar, S. (2011). Effect of SVM kernel functions on classification of vibration signals of a single point cutting tool. Expert Systems with Applications, 38(12), 15202–15207. https://doi.org/10.1016/j.eswa.2011.05.081

    Article  Google Scholar 

  • Fernández, A., Garcia, S., Herrera, F., & Chawla, N. V. (2018). SMOTE for learning from imbalanced data: Progress and challenges, marking the 15-year anniversary. Journal of Artificial Intelligence Research, 61(1), 863–905. https://doi.org/10.1613/jair.1.11192

    Article  Google Scholar 

  • Fernández-Delgado, M., Cernadas, E., Barro, S., & Amorim, D. (2014). Do we need hundreds of classifiers to solve real world classification problems? The Journal of Machine Learning Research, 15(1), 3133–3181.

    Google Scholar 

  • Fletcher, R. S., & Reddy, K. N. (2016). Random forest and leaf multispectral reflectance data to differentiate three soybean varieties from two pigweeds. Computers and Electronics in Agriculture, 128(1), 199–206. https://doi.org/10.1016/j.compag.2016.09.004

    Article  Google Scholar 

  • Fu, X., Wei, Y., Xu, F., Wang, T., Lu, Y., Li, J., & Huang, J. Z. (2019). Semi-supervised aspect-level sentiment classification model based on variational autoencoder. Knowledge-Based Systems, 171(1), 81–92. https://doi.org/10.1016/j.knosys.2019.02.008

    Article  Google Scholar 

  • Glowacz, A. (2018). Acoustic based fault diagnosis of three-phase induction motor. Applied Acoustics, 137(1), 82–89. https://doi.org/10.1016/j.apacoust.2018.03.010

    Article  Google Scholar 

  • Goyal, D., Pabla, B., Dhami, S., et al. (2019). Non-contact sensor placement strategy for condition monitoring of rotating machine-elements. Engineering Science and Technology, an International Journal, 22(2), 489–501. https://doi.org/10.1016/j.jestch.2018.12.006

    Article  Google Scholar 

  • Guan, Z., Chen, P., Zhang, X., Zhou, X., & Li, K. (2017). Vibration analysis of shaft misalignment and diagnosis method of structure faults for rotating machinery. International Journal of Performability Engineering, 13(4), 337–347. https://doi.org/10.23940/ijpe.17.04.p1.337347

    Article  Google Scholar 

  • Görgens, E. B., Montaghi, A., & Rodriguez, L. C. E. (2015). A performance comparison of machine learning methods to estimate the fast-growing forest plantation yield based on laser scanning metrics. Computers and Electronics in Agriculture, 116(1), 221–227. https://doi.org/10.1016/j.compag.2015.07.004

    Article  Google Scholar 

  • Hujare, D. P., & Karnik, M. G. (2018). Vibration responses of parallel misalignment in al shaft rotor bearing system with rigid coupling. Materials Today: Proceedings, 5(11), 23863–23871. https://doi.org/10.1016/j.matpr.2018.10.178

    Article  Google Scholar 

  • ISO (2016) Mechanical vibration—Rotor balancing—Part 11: Procedures and tolerances for rotors with rigid behaviour. ISO 21940-11.

  • Jin, Y., Qin, C., Huang, Y., & Liu, C. (2021). Actual bearing compound fault diagnosis based on active learning and decoupling attentional residual network. Measurement, 173(1), 108500. https://doi.org/10.1016/j.measurement.2020.108500

    Article  Google Scholar 

  • Kankar, P. K., Sharma, S. C., & Harsha, S. P. (2011). Fault diagnosis of ball bearings using machine learning methods. Expert Systems with Applications, 38(3), 1876–1886. https://doi.org/10.1016/j.eswa.2010.07.119

    Article  Google Scholar 

  • Klausen, A., Van Khang, H., Robbersmyr, K.G. (2018). Novel threshold calculations for remaining useful lifetime estimation of rolling element bearings. In 2018 XIII International Conference on Electrical Machines (ICEM), Alexandroupoli, Greece, pp 1912–1918. https://doi.org/10.1109/ICELMACH.2018.8507056.

  • Lal, M., & Tiwari, R. (2018). Experimental identification of shaft misalignment in a turbo-generator system. Sādhanā, 43(5), 80. https://doi.org/10.1007/s12046-018-0859-1

    Article  Google Scholar 

  • Li, H., Li, M., Li, C., Li, F., & Meng, G. (2017). Multi-faults decoupling on turbo-expander using differential-based ensemble empirical mode decomposition. Mechanical Systems and Signal Processing, 93(1), 267–280. https://doi.org/10.1016/j.ymssp.2017.02.015

    Article  Google Scholar 

  • Li, J., Li, H., Yu. J.L. (2011). Application of random-SMOTE on imbalanced data mining. In 2011 Fourth International Conference on Business Intelligence and Financial Engineering, Wuhan, China, pp 130–133. https://doi.org/10.1109/BIFE.2011.25.

  • Li, J., Li, X., He, D., & Qu, Y. (2020). Unsupervised rotating machinery fault diagnosis method based on integrated sae-dbn and a binary processor. Journal of Intelligent Manufacturing, 95(8), 1–18. https://doi.org/10.1007/s10845-020-01543-8

    Article  Google Scholar 

  • Li, P., Hu, W., Hu, R., & Chen, Z. (2020). Imbalance fault detection based on the integrated analysis strategy for variable-speed wind turbines. International Journal of Electrical Power& Energy Systems, 116(1), 105570. https://doi.org/10.1016/j.ijepes.2019.105570

    Article  Google Scholar 

  • Li, X., Yang, X., Yang, Y., Bennett, I., & Mba, D. (2019). A novel diagnostic and prognostic framework for incipient fault detection and remaining service life prediction with application to industrial rotating machines. Applied Soft Computing, 82(1), 105564. https://doi.org/10.1016/j.asoc.2019.105564

    Article  Google Scholar 

  • Li, X., Zhang, W., Ding, Q., & Sun, J. Q. (2020). Intelligent rotating machinery fault diagnosis based on deep learning using data augmentation. Journal of Intelligent Manufacturing, 31(2), 433–452. https://doi.org/10.1007/s10845-018-1456-1

    Article  Google Scholar 

  • Martins, D. H. C., Viana, D. P., de Lima, A. A., Pinto, M. F., Tarrataca, L., Silva, F. L., Gutiérrez, R. H. R., de Moura Prego, T., Monteiro, U. A. B. V., & Haddad, D. B. (2021). Diagnostic and severity analysis of combined failures composed by imbalance and misalignment in rotating machines. The International Journal of Advanced Manufacturing Technology, 114(9), 1–16. https://doi.org/10.1007/s00170-021-06873-2

    Article  Google Scholar 

  • Martins, D.H.C.D.S.S., Hemerly, D.O., Marins, M., Lima, A.A., Silva, F.L., Prego, T.D.M., Ribeiro, F.M.L., Netto, S.L., da Silva, E.A.B. (2019). Application of machine learning to evaluate unbalance severity in rotating machines. In Proceedings of the 10th International Conference on Rotor Dynamics—IFToMM, Rio de Janeiro, Brazil, pp 144–160. https://doi.org/10.1007/978-3-319-99268-6_11.

  • McClaning, K., Vito, T. (2000). Radio receiver design. Noble Publishing.

  • Mikołajczyk, A., Grochowski, M. (2018). Data augmentation for improving deep learning in image classification problem. In 2018 international interdisciplinary PhD workshop (IIPhDW), Swinoujscie, Poland, pp 117–122. https://doi.org/10.1109/IIPHDW.2018.8388338.

  • Oh, J. W., & Jeong, J. (2020). Data augmentation for bearing fault detection with a light weight CNN. Procedia Computer Science, 175(1), 72–79. https://doi.org/10.1016/j.procs.2020.07.013

    Article  Google Scholar 

  • Pandya, D., Upadhyay, S., & Harsha, S. P. (2013). Fault diagnosis of rolling element bearing with intrinsic mode function of acoustic emission data using APF-KNN. Expert Systems with Applications, 40(10), 4137–4145. https://doi.org/10.1016/j.eswa.2013.01.033

    Article  Google Scholar 

  • Polat, K. (2020). The fault diagnosis based on deep long short-term memory model from the vibration signals in the computer numerical control machines. Journal of the Institute of Electronics and Computer, 2(1), 72–92. https://doi.org/10.33969/JIEC.2020.21006

    Article  Google Scholar 

  • Qian, W., Li, S., & Jiang, X. (2019). Deep transfer network for rotating machine fault analysis. Pattern Recognition, 96(1), 106993. https://doi.org/10.1016/j.patcog.2019.106993

    Article  Google Scholar 

  • Qin, C., Jin, Y., Tao, J., Xiao, D., Yu, H., Liu, C., Shi, G., Lei, J., & Liu, C. (2021). DTCNNMI: A deep twin convolutional neural networks with multi-domain inputs for strongly noisy diesel engine misfire detection. Measurement, 180(1), 109548. https://doi.org/10.1016/j.measurement.2021.109548

    Article  Google Scholar 

  • Rashid, K. M., & Louis, J. (2019). Times-series data augmentation and deep learning for construction equipment activity recognition. Advanced Engineering Informatics, 42(1), 100944. https://doi.org/10.1016/j.aei.2019.100944

    Article  Google Scholar 

  • Razavi-Far, R., Farajzadeh-Zanjani, M., & Saif, M. (2017). An integrated class-imbalanced learning scheme for diagnosing bearing defects in induction motors. IEEE Transactions on Industrial Informatics, 13(6), 2758–2769. https://doi.org/10.1109/TII.2017.2755064

    Article  Google Scholar 

  • Rehman, A., Naz, S., Razzak, M. I., Akram, F., & Imran, M. (2020). A deep learning-based framework for automatic brain tumors classification using transfer learning. Circuits, Systems, and Signal Processing, 39(2), 757–775. https://doi.org/10.1007/s00034-019-01246-3

    Article  Google Scholar 

  • Rochac, J.F.R., Liang, L., Zhang, N., Oladunni, T. (2019). A gaussian data augmentation technique on highly dimensional, limited labeled data for multiclass classification using deep learning. In 2019 Tenth International Conference on Intelligent Control and Information Processing (ICICIP), Marrakesh, Morocco, pp 145–151. https://doi.org/10.1109/ICICIP47338.2019.9012197.

  • Ruiz-Gonzalez, R., Gomez-Gil, J., Gomez-Gil, F. J., & Martínez-Martínez, V. (2014). An SVM-based classifier for estimating the state of various rotating components in agro-industrial machinery with a vibration signal acquired from a single point on the machine chassis. Sensors, 14(11), 20713–20735. https://doi.org/10.3390/s141120713

    Article  Google Scholar 

  • Santos, M. S., Soares, J. P., Abreu, P. H., Araujo, H., & Santos, J. (2018). Cross-validation for imbalanced datasets: Avoiding overoptimistic and overfitting approaches [research frontier]. IEEE Computational Intelligence Magazine, 13(4), 59–76. https://doi.org/10.1109/MCI.2018.2866730

    Article  Google Scholar 

  • Shao, H., Jiang, H., Zhao, H., & Wang, F. (2017). A novel deep autoencoder feature learning method for rotating machinery fault diagnosis. Mechanical Systems and Signal Processing, 95(1), 187–204. https://doi.org/10.1016/j.ymssp.2017.03.034

    Article  Google Scholar 

  • Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on image data augmentation for deep learning. Journal of Big Data, 6(1), 1–48. https://doi.org/10.1186/s40537-019-0197-0

    Article  Google Scholar 

  • Si, X. S., Wang, W., Hu, C. H., & Zhou, D. H. (2011). Remaining useful life estimation—A review on the statistical data driven approaches. European Journal of Operational Research, 213(1), 1–14. https://doi.org/10.1016/j.ejor.2010.11.018

    Article  Google Scholar 

  • Sikder, N., Bhakta, K., Al Nahid, A., Islam, M.M. (2019). Fault diagnosis of motor bearing using ensemble learning algorithm with FFT-based preprocessing. In 2019 International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST), Dhaka, Bangladesh, pp 564–569. https://doi.org/10.1109/ICREST.2019.8644089.

  • Sinha, J. K., Lees, A., & Friswell, M. (2004). Estimating unbalance and misalignment of a flexible rotating machine from a single run-down. Journal of Sound and Vibration, 272(3), 967–989. https://doi.org/10.1016/j.jsv.2003.03.006

    Article  Google Scholar 

  • Srinivas, R. S., Tiwari, R., & Kannababu, C. (2019). Model based analysis and identification of multiple fault parameters in coupled rotor systems with offset discs in the presence of angular misalignment and integrated with an active magnetic bearing. Journal of Sound and Vibration, 450(1), 109–140. https://doi.org/10.1016/j.jsv.2019.03.007

    Article  Google Scholar 

  • Suarez-Alvarez, M. M., Pham, D. T., Prostov, M. Y., & Prostov, Y. I. (2012). Statistical approach to normalization of feature vectors and clustering of mixed datasets. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 468(2145), 2630–2651. https://doi.org/10.1098/rspa.2011.0704

    Article  Google Scholar 

  • Vapnik, V. (2013). The Nature of Statistical Learning Theory. Berlin: Springer.

    Google Scholar 

  • Verma, A. K., Sarangi, S., & Kolekar, M. (2014). Experimental investigation of misalignment effects on rotor shaft vibration and on stator current signature. Journal of Failure Analysis and Prevention, 14(2), 125–138. https://doi.org/10.1007/s11668-014-9785-7

    Article  Google Scholar 

  • Villa, L. F., Reñones, A., Perán, J. R., & de Miguel, L. J. (2012). Statistical fault diagnosis based on vibration analysis for gear test-bench under non-stationary conditions of speed and load. Mechanical Systems and Signal Processing, 29(1), 436–446. https://doi.org/10.1016/j.ymssp.2011.12.013

    Article  Google Scholar 

  • Walpole, R.E., Myers, R.H. (2012). Probability & Statistics for Engineers & Scientists. Pearson Education Limited.

  • Wang, H., & Gong, J. (2019). Dynamic analysis of coupling misalignment and unbalance coupled faults. Journal of Low Frequency Noise, Vibration and Active Control, 38(2), 363–376. https://doi.org/10.1177/1461348418821582

    Article  Google Scholar 

  • Wang, H.Y. (2008). Combination approach of SMOTE and biased-SVM for imbalanced datasets. In 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), Hong Kong, China, pp 228–231. https://doi.org/10.1109/IJCNN.2008.4633794.

  • Wang, J., Du, G., Zhu, Z., Shen, C., & He, Q. (2020). Fault diagnosis of rotating machines based on the EMD manifold. Mechanical Systems and Signal Processing, 135(1), 106443. https://doi.org/10.1016/j.ymssp.2019.106443

    Article  Google Scholar 

  • Wang, N., & Jiang, D. (2018). Vibration response characteristics of a dual-rotor with unbalance-misalignment coupling faults: Theoretical analysis and experimental study. Mechanism and Machine Theory, 125(1), 207–219. https://doi.org/10.1016/j.mechmachtheory.2018.03.009

    Article  Google Scholar 

  • William, P. E., & Hoffman, M. W. (2011). Identification of bearing faults using time domain zero-crossings. Mechanical Systems and Signal Processing, 25(8), 3078–3088. https://doi.org/10.1016/j.ymssp.2011.06.001

    Article  Google Scholar 

  • Xiao, D., Qin, C., Yu, H., Huang, Y., Liu, C., & Zhang, J. (2021). Unsupervised machine fault diagnosis for noisy domain adaptation using marginal denoising autoencoder based on acoustic signals. Measurement, 176(1), 109186. https://doi.org/10.1016/j.measurement.2021.109186

    Article  Google Scholar 

  • Xing, W., & Bei, Y. (2020). Medical health big data classification based on KNN classification algorithm. IEEE Access, 8(1), 28808–28819. https://doi.org/10.1109/ACCESS.2019.2955754

    Article  Google Scholar 

  • Xu, M., & Marangoni, R. (1994). Vibration analysis of a motor-flexible coupling-rotor system subject to misalignment and unbalance, part i: Theoretical model and analysis. Journal of Sound and Vibration, 176(5), 663–679. https://doi.org/10.1006/jsvi.1994.1405

    Article  Google Scholar 

  • Xu, Q., Lu, S., Jia, W., & Jiang, C. (2019). Imbalanced fault diagnosis of rotating machinery via multi-domain feature extraction and cost-sensitive learning. Journal of Intelligent Manufacturing, 6, 1–15. https://doi.org/10.1007/s10845-019-01522-8

    Article  Google Scholar 

  • Yamamoto, G. K., da Costa, C., & da Silva Sousa, J. S. (2016). A smart experimental setup for vibration measurement and imbalance fault detection in rotating machinery. Case Studies in Mechanical Systems and Signal Processing, 4(1), 8–18. https://doi.org/10.1016/j.csmssp.2016.07.001

    Article  Google Scholar 

  • Yang, B., Lei, Y., Jia, F., & Xing, S. (2019). An intelligent fault diagnosis approach based on transfer learning from laboratory bearings to locomotive bearings. Mechanical Systems and Signal Processing, 122(1), 692–706. https://doi.org/10.1016/j.ymssp.2018.12.051

    Article  Google Scholar 

  • Yoon, J., Friel, N. (2013). Efficient estimation of the number of neighbours in probabilistic K-Nearest Neighbour classification. https://arxiv.org/abs/1305.1002

  • Yu, G. (2019). A concentrated time-frequency analysis tool for bearing fault diagnosis. IEEE Transactions on Instrumentation and Measurement, 69(2), 371–381. https://doi.org/10.1109/TIM.2019.2901514

    Article  Google Scholar 

  • Yu, K., Lin, T. R., Ma, H., Li, H., & Zeng, J. (2019). A combined polynomial chirplet transform and synchroextracting technique for analyzing nonstationary signals of rotating machinery. IEEE Transactions on Instrumentation and Measurement, 69(4), 1505–1518. https://doi.org/10.1109/TIM.2019.2913058

    Article  Google Scholar 

  • Yu, K., Lin, T. R., Ma, H., Li, X., & Li, X. (2021). A multi-stage semi-supervised learning approach for intelligent fault diagnosis of rolling bearing using data augmentation and metric learning. Mechanical Systems and Signal Processing, 146(1), 107043. https://doi.org/10.1016/j.ymssp.2020.107043

    Article  Google Scholar 

  • Zhang, S., Zhang, S., Wang, B., & Habetler, T. G. (2020). Deep learning algorithms for bearing fault diagnostics-a comprehensive review. IEEE Access, 8(1), 29857–29881. https://doi.org/10.1109/ACCESS.2020.2972859

  • Zhang, Y., Li, X., Gao, L., Chen, W., & Li, P. (2020). Intelligent fault diagnosis of rotating machinery using a new ensemble deep auto-encoder method. Measurement, 151(1), 107232. https://doi.org/10.1016/j.measurement.2019.107232

    Article  Google Scholar 

  • Ziani, R., Felkaoui, A., & Zegadi, R. (2017). Bearing fault diagnosis using multiclass support vector machines with binary particle swarm optimization and regularized fishers criterion. Journal of Intelligent Manufacturing, 28(2), 405–417. https://doi.org/10.1007/s10845-014-0987-3

    Article  Google Scholar 

  • Zur, R., Jiang, Y., & Metz, C. (2004). Comparison of two methods of adding jitter to artificial neural network training. International Congress Series, 1268(1), 886–889. https://doi.org/10.1016/j.ics.2004.03.238

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) Finance Code 001 and by Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare that they have no conflict of interest.

Data availability

The dataset generated in this paper is available from the corresponding author on reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martins, D.H.C.S.S., de Lima, A.A., Pinto, M.F. et al. Hybrid data augmentation method for combined failure recognition in rotating machines. J Intell Manuf 34, 1795–1813 (2023). https://doi.org/10.1007/s10845-021-01873-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-021-01873-1

Keywords

Navigation