Skip to main content

A context-aware recommendation system for improving manufacturing process modeling

Abstract

Process recommendation is an essential technique to help process modeler effectively and efficiently model a manufacturing process from scratch. However, the current process recommendation methods suffer from the following problems: (1) To extract all the execution paths from a manufacturing process, the behavior-based methods may occur a state space explosion problem when unfolding a process with multiple parallel patterns, resulting in low efficiency. (2) Current structure-based methods are inefficient since too many expensive computations of the graph edit distance are involved. (3) Most of the existing methods manually design their process similarity metrics with several features, which can only be applied in specific situations. (4) Few works provide visualization tools for process modeling assistance. To resolve these problems, this paper proposes a context-aware recommendation system for improving manufacturing process modeling. First, the independent paths and P,Q-grams are efficiently extracted from the manufacturing processes in the repository to represent their typical behavior and structure. Then, the process recommendation problem is transformed into the word prediction problem in natural language processing, where the serialization of an independent path/P,Q-gram and a node in it are separately regarded as a sentence and a word. The Word2vec model is introduced to automatically learn the relationships among nodes from independent paths and P,Q-grams and generate the vectors with hundreds of context-aware features for nodes in the repository. After that, the top-k similar nodes are recommended for the target node in the process fragment under construction based on the k-nearest neighbors algorithm. Finally, a visualization tool is provided for process modelers to efficiently design a new manufacturing process. Experimental evaluations show that the proposed method can perform similar or even better than the baseline methods in terms of recommending quality.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig.2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig.11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

References

  1. Ahn, H., & Chang, T. W. (2018). Measuring similarity for manufacturing process models. In IFIP International Conference on Advances in Production Management Systems (pp. 223–231). Springer, Cham. https://doi.org/10.1007/978-3-319-99707-0_28.

  2. Ahn, H., & Chang, T. W. (2019). A similarity-based hierarchical clustering method for manufacturing process models. Sustainability, 11(9), 2560. https://doi.org/10.3390/SU11092560

    Article  Google Scholar 

  3. Augsten, N., Böhlen, M., & Gamper, J. (2008). The pq-gram distance between ordered labeled trees. ACM Transactions on Database Systems (TODS), 35(1), 1–36. https://doi.org/10.1145/1670243.1670247

    Article  Google Scholar 

  4. Awadid, A., Nurcan, S., & Ghannouchi, S. A. (2017). Towards a decision-support system for selecting the appropriate business process modeling formalism: A context-aware roadmap. In Enterprise, Business-Process and Information Systems Modeling (pp. 239–256): Springer. https://doi.org/10.1007/978-3-319-59466-8_15.

  5. Bobek, S., Nalepa, G. J., & Grodzki, O. (2014). Integration of activity modeller with Bayesian network based recommender for business processes. In KESE@ ECAI.

  6. Cao, B., Yin, J., Li, Y., & Deng, S. (2013). A maximal common subgraph based method for process retrieval. In 2013 IEEE 20th International Conference on Web Services (pp. 316–323). IEEE. https://doi.org/10.1109/ICWS.2013.50.

  7. Cao, B., Wang, J., Fan, J., Yin, J., & Dong, T. (2016). Querying similar process models based on the Hungarian algorithm. IEEE Transactions on Services Computing, 10(1), 121–135. https://doi.org/10.1109/TSC.2016.2597143

    Article  Google Scholar 

  8. Cao, B., Hong, F., Wang, J., Fan, J., & Lv, M. (2019). Workflow difference detection based on basis paths. Engineering Applications of Artificial Intelligence, 81, 420–427. https://doi.org/10.1016/j.engappai.2019.03.009

    Article  Google Scholar 

  9. Conforti, R., Fink, S., Manderscheid, J., & Röglinger, M. (2016). PRISM–a predictive risk monitoring approach for business processes. In International Conference on Business Process Management (pp. 383–400). Springer, Cham. https://doi.org/10.1007/978-3-319-45348-4_22.

  10. Deng, S., Wang, D., Li, Y., Cao, B., Yin, J., Wu, Z., & Zhou, M. (2016). A recommendation system to facilitate business process modeling. IEEE Transactions on Cybernetics, 47(6), 1380–1394. https://doi.org/10.1109/TCYB.2016.2545688

    Article  Google Scholar 

  11. Di Francescomarino, C., Dumas, M., Maggi, F. M., & Teinemaa, I. (2016). Clustering-based predictive process monitoring. IEEE Transactions on Services Computing, 12(6), 896–909. https://doi.org/10.1109/TCYB.2016.2545688

    Article  Google Scholar 

  12. Dijkman, R., Dumas, M., & García-Bañuelos, L. (2009). Graph matching algorithms for business process model similarity search. In International conference on business process management (pp. 48–63). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03848-8_5.

  13. Dijkman, R., Dumas, M., Van Dongen, B., Käärik, R., & Mendling, J. (2011). Similarity of business process models: Metrics and evaluation. Information Systems, 36(2), 498–516. https://doi.org/10.1016/J.IS.2010.09.006

    Article  Google Scholar 

  14. Dong, Z., Wen, L., Huang, H., & Wang, J. (2014). CFS: A behavioral similarity algorithm for process models based on complete firing sequences. In OTM Confederated International Conferences" On the Move to Meaningful Internet Systems" (pp. 202–219). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45563-0_12.

  15. Efthymiou, K., Sipsas, K., Mourtzis, D., & Chryssolouris, G. (2015). On knowledge reuse for manufacturing systems design and planning: A semantic technology approach. CIRP Journal of Manufacturing Science and Technology, 8, 1–11. https://doi.org/10.1016/j.cirpj.2014.10.006

    Article  Google Scholar 

  16. Elkindy, A. I. A. (2019). Survey of business process modeling recommender systems.

  17. Fan, J., Wang, J., An, W., Cao, B., & Dong, T. (2017). Detecting difference between process models based on the refined process structure tree. Mobile Information Systems,. https://doi.org/10.1155/2017/6389567

    Article  Google Scholar 

  18. Fellmann, M., Zarvic, N., Metzger, D., & Koschmider, A. (2015). Requirements catalog for business process modeling recommender systems. In Wirtschaftsinformatik (pp. 393–407).

  19. Finis, J. P., Raiber, M., Augsten, N., Brunel, R., Kemper, A., & Färber, F. (2013). Rws-diff: flexible and efficient change detection in hierarchical data. In Proceedings of the 22nd ACM international conference on Information & Knowledge Management (pp. 339–348). https://doi.org/10.1145/2505515.2505763.

  20. Ge, J. Q., Ji, S. M., & Tan, D. P. (2018). A gas-liquid-solid three-phase abrasive flow processing method based on bubble collapsing. The International Journal of Advanced Manufacturing Technology, 95(1), 1069–1085. https://doi.org/10.1007/S00170-017-1250-9

    Article  Google Scholar 

  21. Han, L., Xing, K., Chen, X., & Xiong, F. (2018). A Petri net-based particle swarm optimization approach for scheduling deadlock-prone flexible manufacturing systems. Journal of Intelligent Manufacturing, 29(5), 1083–1096. https://doi.org/10.1007/S10845-015-1161-2

    Article  Google Scholar 

  22. He, Y., Li, N., Wang, C., Xia, L. Q., Yong, X., & Wu, X. Y. (2019). Development of a novel autonomous lower extremity exoskeleton robot for walking assistance. Frontiers of Information Technology & Electronic Engineering, 20(3), 318–329. https://doi.org/10.1631/FITEE.1800561

    Article  Google Scholar 

  23. Huang, M., Han, H., Wang, H., Li, L., Zhang, Y., & Bhatti, U. A. (2018). A clinical decision support framework for heterogeneous data sources. IEEE Journal of Biomedical and Health Informatics, 22(6), 1824–1833. https://doi.org/10.1109/JBHI.2018.2846626

    Article  Google Scholar 

  24. Huang, B., Zhang, S., Huang, R., Li, X., & Zhang, Y. (2019). An effective retrieval approach of 3D CAD models for macro process reuse. The International Journal of Advanced Manufacturing Technology, 102(5), 1067–1089. https://doi.org/10.1007/S00170-018-2968-8

    Article  Google Scholar 

  25. Jain, V., Swarnkar, R., & Tiwari, M. K. (2003). Modelling and analysis of wafer fabrication scheduling via generalized stochastic Petri net and simulated annealing. International Journal of Production Research, 41(15), 3501–3527. https://doi.org/10.1080/0020754031000118152

    Article  Google Scholar 

  26. Krumeich, J., Mehdiyev, N., Werth, D., & Loos, P. (2015). Towards an extended metamodel of event-driven process chains to model complex event patterns. In International Conference on Conceptual Modeling (pp. 119–130). Springer, Cham. https://doi.org/10.1007/978-3-319-25747-1_12.

  27. Kunze, M., Weidlich, M., & Weske, M. (2011). Behavioral similarity–a proper metric. In International Conference on Business Process Management (pp. 166–181). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23059-2_15.

  28. Li, C., Ji, S. M., & Tan, D. P. (2012). Multiple-loop digital control method for a 400-Hz inverter system based on phase feedback. IEEE Transactions on Power Electronics, 28(1), 408–417. https://doi.org/10.1109/TPEL.2012.2188043

    Article  Google Scholar 

  29. Li, L., Tan, D., Yin, Z., Wang, T., Fan, X., & Wang, R. (2021a). Investigation on the multiphase vortex and its fluid-solid vibration characters for sustainability production. Renewable Energy, 175, 887–909. https://doi.org/10.1016/J.POWTEC.2019.06.036

    Article  Google Scholar 

  30. Li, L., Tan, D., Wang, T., Yin, Z., Fan, X., & Wang, R. (2021b). Multiphase coupling mechanism of free surface vortex and the vibration-based sensing method. Energy, 216, 119136. https://doi.org/10.1016/J.ENERGY.2020.119136

    Article  Google Scholar 

  31. Li, Y., Cao, B., Xu, L., Yin, J., Deng, S., Yin, Y., & Wu, Z. (2013). An efficient recommendation method for improving business process modeling. IEEE Transactions on Industrial Informatics, 10(1), 502–513. https://doi.org/10.1109/TII.2013.2258677

    Article  Google Scholar 

  32. Li, Y., Xu, L., Tian, F., Jiang, L., Zhong, X., & Chen, E. (2015). Word embedding revisited: A new representation learning and explicit matrix factorization perspective. In Twenty-Fourth International Joint Conference on Artificial Intelligence.

  33. Liu, C., Zeng, Q., Duan, H., Gao, S., & Zhou, C. (2019). Towards comprehensive support for business process behavior similarity measure. IEICE Transactions on Information and Systems, 102(3), 588–597. https://doi.org/10.1587/TRANSINF.2018EDP7127

    Article  Google Scholar 

  34. Lohmann, N., Verbeek, E., & Dijkman, R. (2009). Petri net transformations for business processes–a survey. In Transactions on petri nets and other models of concurrency II (pp. 46–63). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00899-3_3.

  35. Lu, J., Ou, C., Liao, C., Zhang, Z., Chen, K., & Liao, X. (2020). Formal modelling of a sheet metal smart manufacturing system by using Petri nets and first-order predicate logic. Journal of Intelligent Manufacturing,. https://doi.org/10.1007/S10845-020-01602-0

    Article  Google Scholar 

  36. Maalouf, E., & Sokhn, M. (2014). Semantic based auto-completion of business process modelling in egovernment.

  37. McCabe, T. J. (1976). A complexity measure. IEEE Transactions on Software Engineering, 4, 308–320. https://doi.org/10.1109/TSE.1976.233837

    Article  Google Scholar 

  38. Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013a). Efficient estimation of word representations in vector space. arXiv:1301.3781.

  39. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., & Dean, J. (2013b). Distributed representations of words and phrases and their compositionality. arXiv:1310.4546.

  40. Mogale, D. G., Cheikhrouhou, N., & Tiwari, M. K. (2020a). Modelling of sustainable food grain supply chain distribution system: A bi-objective approach. International Journal of Production Research, 58(18), 5521–5544. https://doi.org/10.1080/00207543.2019.1669840

    Article  Google Scholar 

  41. Mogale, D. G., Kumar, S. K., & Tiwari, M. K. (2020b). Green food supply chain design considering risk and post-harvest losses: A case study. Annals of Operations Research, 295, 257–284. https://doi.org/10.1007/S10479-020-03664-Y

    Article  Google Scholar 

  42. Moldagulova, A., & Sulaiman, R. B. (2017). Using KNN algorithm for classification of textual documents. In 2017 8th International Conference on Information Technology (ICIT) (pp. 665–671). IEEE. https://doi.org/10.1109/ICITECH.2017.8079924.

  43. Mourtzis, D., Siatras, V., & Zogopoulos, V. (2020). Augmented reality visualization of production scheduling and monitoring. Procedia CIRP, 88, 151–156. https://doi.org/10.1016/j.procir.2020.05.027

    Article  Google Scholar 

  44. Pan, Y., Ji, S., Tan, D., & Cao, H. (2020). Cavitation-based soft abrasive flow processing method. The International Journal of Advanced Manufacturing Technology, 109(9), 2587–2602. https://doi.org/10.1007/S00170-020-05836-3

    Article  Google Scholar 

  45. Pittke, F., Richetti, P. H. P., Mendling, J., & Baião, F. A. (2016). Context-sensitive textual recommendations for incomplete process model elements. In International Conference on Business Process Management (pp. 189–197). Springer, Cham. https://doi.org/10.1007/978-3-319-23063-4_13.

  46. Qiao, L., Kao, S., & Zhang, Y. (2011). Manufacturing process modelling using process specification language. The International Journal of Advanced Manufacturing Technology, 55(5), 549–563. https://doi.org/10.1007/S00170-010-3115-3

    Article  Google Scholar 

  47. Rehse, J. R., & Fettke, P. (2018). Clustering business process activities for identifying reference model components. In International Conference on Business Process Management (pp. 5–17). Springer, Cham. https://doi.org/10.1007/978-3-030-11641-5_1.

  48. Shen, V. R., Yang, C. Y., Shen, R. K., & Chen, Y. C. (2018). Application of Petri nets to deadlock avoidance in iPad-like manufacturing systems. Journal of Intelligent Manufacturing, 29(6), 1363–1378. https://doi.org/10.1007/S10845-015-1185-7

    Article  Google Scholar 

  49. Srikant, Y. N., & Shankar, P. (2018). The compiler design handbook: Optimizations and machine code generation. Boca Raton: CRC Press.

    Google Scholar 

  50. Tan, D., Ji, S. M., & Jin, M. S. (2012). Intelligent computer-aided instruction modeling and a method to optimize study strategies for parallel robot instruction. IEEE Transactions on Education, 56(3), 268–273. https://doi.org/10.1109/TE.2012.2212707

    Article  Google Scholar 

  51. Tan, D., Ji, S. M., & Fu, Y. Z. (2016). An improved soft abrasive flow finishing method based on fluid collision theory. The International Journal of Advanced Manufacturing Technology, 85(5), 1261–1274. https://doi.org/10.1007/S00170-015-8044-8

    Article  Google Scholar 

  52. Tan, D., Li, L., Zhu, Y. L., Zheng, S., Ruan, H. J., & Jiang, X. Y. (2017). An embedded cloud database service method for distributed industry monitoring. IEEE Transactions on Industrial Informatics, 14(7), 2881–2893. https://doi.org/10.1109/TII.2017.2773644

    Article  Google Scholar 

  53. Tan, D., Zhang, L., & Ai, Q. (2019). An embedded self-adapting network service framework for networked manufacturing system. Journal of Intelligent Manufacturing, 30(2), 539–556. https://doi.org/10.1007/s10845-016-1265-3

    Article  Google Scholar 

  54. Tibaut, A., Rebolj, D., & Perc, M. N. (2016). Interoperability requirements for automated manufacturing systems in construction. Journal of Intelligent Manufacturing, 27(1), 251–262. https://doi.org/10.1007/S10845-013-0862-7

    Article  Google Scholar 

  55. Tiwari, M. K., Sinha, N., Kumar, S., Rai, R., & Mukhopadhyay, S. K. (2002). A Petri net based approach to determine the disassembly strategy of a product. International Journal of Production Research, 40(5), 1113–1129. https://doi.org/10.1080/00207540110097176

    Article  Google Scholar 

  56. Vanhatalo, J., Völzer, H., & Leymann, F. (2007). Faster and more focused control-flow analysis for business process models through sese decomposition. In International Conference on Service-Oriented Computing (pp. 43–55). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74974-5_4

  57. Wang, D., Deng, S., Zhang, X., & Xu, G. (2018). Learning to embed music and metadata for context-aware music recommendation. World Wide Web, 21(5), 1399–1423. https://doi.org/10.1007/S11280-017-0521-6

    Article  Google Scholar 

  58. Wang, J., Gui, S., & Cao, B. (2019). A process recommendation method using bag-of-fragments. International Journal of Intelligent Internet of Things Computing, 1(1), 32–42. https://doi.org/10.1504/IJIITC.2019.10025256

    Article  Google Scholar 

  59. Wang, J., Tan, D., Cao, B., Fan, J., & Deep, S. (2020). Independent path-based process recommendation algorithm for improving biomedical process modelling. Electronics Letters, 56(11), 531–533. https://doi.org/10.1049/EL.2019.3978

    Article  Google Scholar 

  60. Wang, S., Yin, M., Wang, Z., & Wang, J. (2015). TAR++: A new process model similarity algorithm based on the importance of TARs. In Asia-Pacific Conference on Business Process Management (pp. 98–112). Springer, Cham. https://doi.org/10.1007/978-3-319-19509-4_8.

  61. Zeng, Q., Liu, J., Zhou, C., Liu, C., & Duan, H. (2020). A novel approach for business process similarity measure based on role relation network mining. IEEE Access, 8, 60918–60928. https://doi.org/10.1109/ACCESS.2020.2983114

    Article  Google Scholar 

  62. Zeng, Z., Tung, A. K., Wang, J., Feng, J., & Zhou, L. (2009). Comparing stars: On approximating graph edit distance. Proceedings of the VLDB Endowment, 2(1), 25–36. https://doi.org/10.14778/1687627.1687631

    Article  Google Scholar 

  63. Zha, H., Wang, J., Wen, L., Wang, C., & Sun, J. (2010). A workflow net similarity measure based on transition adjacency relations. Computers in Industry, 61(5), 463–471. https://doi.org/10.1016/J.COMPIND.2010.01.001

    Article  Google Scholar 

  64. Zhang, L., Lv, H., Tan, D., Xu, F., Chen, J., Bao, G., & Cai, S. (2018). Adaptive quantum genetic algorithm for task sequence planning of complex assembly systems. Electronics Letters, 54(14), 870–872. https://doi.org/10.1049/el.2018.0609

    Article  Google Scholar 

  65. Zhang, S. Y., Gu, Y., Yi, G. D., & Wang, Z. L. (2020). A knowledge matching approach based on multi-classification radial basis function neural network for knowledge push system. Frontiers of Information Technology & Electronic Engineering, 21, 981–994. https://doi.org/10.1631/FITEE.1900057

    Article  Google Scholar 

  66. Zhao, B., Guo, W., & Quan, L. (2020a). Cavitation of a submerged jet at the spherical valve plate/cylinder block interface for axial piston pump. Chinese Journal of Mechanical Engineering, 33(1), 1–15. https://doi.org/10.1186/S10033-020-00486-8

    Article  Google Scholar 

  67. Zhao, T., Zi, B., Qian, S., & Zhao, J. (2020b). Algebraic method-based point-to-point trajectory planning of an under-constrained cable-suspended parallel robot with variable angle and height cable mast. Chinese Journal of Mechanical Engineering, 33(1), 1–18. https://doi.org/10.1186/s10033-020-00473-z

    Article  Google Scholar 

  68. Zheng, S., Yu, Y., Qiu, M., Wang, L., & Tan, D. (2021). A modal analysis of vibration response of a cracked fluid-filled cylindrical shell. Applied Mathematical Modelling, 91, 934–958. https://doi.org/10.1016/J.APM.2020.09.040

    Article  Google Scholar 

  69. Zhou, C., Liu, C., Zeng, Q., Lin, Z., & Duan, H. (2019). A comprehensive process similarity measure based on models and logs. IEEE Access, 7, 69257–69273. https://doi.org/10.1109/ACCESS.2018.2885819

    Article  Google Scholar 

Download references

Acknowledgements

The project supported by National Key Research & Development Program of China (Grant No. 2018YFB1402802), National Natural Science Foundation of China (Grant Nos. 62102366, 51775501), the Natural Science Foundation of Zhejiang Province, China (Grant Nos. LZ21E050003, LR16E050001), and China Postdoctoral Science Foundation (Grant No. 2019M660145).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dapeng Tan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Gao, S., Tang, Z. et al. A context-aware recommendation system for improving manufacturing process modeling. J Intell Manuf (2021). https://doi.org/10.1007/s10845-021-01854-4

Download citation

Keywords

  • Manufacturing process
  • Process modeling
  • Process recommendation
  • Word2vec