Skip to main content

A novel transfer learning framework for chatter detection using convolutional neural networks


Detection and avoidance of regenerative chatter play a crucial role in ensuring the high quality and efficiency of machining operations. Predominant analytical approaches provide stability lobe diagrams for machining processes. Deep learning is a general term given to the most recent and successful group of machine learning methods that proved great promise in many areas of human life. This study purposes a novel transfer learning framework that combines analytical solutions and convolution neural network (CNN) under a novel transfer learning framework. Stability lobes and numerical time-domain solutions of analytical methods are used to train and label, arguably one of the most successful CNN architectures, AlexNet. This approach eliminates the need for a time-consuming and costly experimental data collection phase for training. Furthermore, an ensemble empirical mode decomposition based signal pre-processing method is developed. An IMF-based multi-band ensemble approach is proposed where only intrinsic mode functions relevant to each modal frequency of the system are selected based on their entropy increase and used in training multiple AlexNet instances. The measured data were collected during shoulder milling from a CNC-vertical milling machine. The results revealed considerable success in several scenarios ranging from 82 to 100%, without using any experimentally measured data in training.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14


  1. Altintas, Y., Stepan, G., Budak, E., Schmitz, T., & Kilic, Z. M. (2020). Chatter stability of machining operations. Journal of Manufacturing Science and Engineering, 142(11), 110801.

  2. Altintas, Y. (2001). Manufacturing automation: Metal cutting mechanics, machine tool vibrations, and CNC design. Cambridge: Cambridge University Press.

    Google Scholar 

  3. Altintaş, Y., & Budak, E. (1995). Analytical prediction of stability lobes in milling. CIRP Annals, 44(1), 357–362.

    Article  Google Scholar 

  4. Budak, E. (2006). Analytical models for high performance milling. Part ii: Process dynamics and stability. International Journal of Machine Tools and Manufacture, 46(12–13), 1489–1499.

    Article  Google Scholar 

  5. Cao, H., Lei, Y., & He, Z. (2013). Chatter identification in end milling process using wavelet packets and Hilbert–Huang transform. International Journal of Machine Tools and Manufacture, 69, 11–19.

    Article  Google Scholar 

  6. Cao, H., Zhou, K., & Chen, X. (2015). Chatter identification in end milling process based on EEMD and nonlinear dimensionless indicators. International Journal of Machine Tools and Manufacture, 92, 52–59.

    Article  Google Scholar 

  7. Chen, Y., Li, H., Hou, L., Bu, X., Ye, S., & Chen, D. (2020). Chatter detection for milling using novel p-leader multifractal features. Journal of Intelligent Manufacturing.

  8. Chen, Y., Li, H., Hou, L., Wang, J., & Xiangjian, B. (2018). An intelligent chatter detection method based on EEMD and feature selection with multi-channel vibration signals. Measurement, 127, 356–365.

    Article  Google Scholar 

  9. Chen, Y., Li, H., Jing, X., Hou, L., & Xiangjian, B. (2019). Intelligent chatter detection using image features and support vector machine. The International Journal of Advanced Manufacturing Technology, 102(5–8), 1433–1442.

    Article  Google Scholar 

  10. Chen, W., Qiu, Y., Feng, Y., Li, Y., & Kusiak, A. (2020). Diagnosis of wind turbine faults with transfer learning algorithms. Renewable Energy, 163, 2053–2067.

    Article  Google Scholar 

  11. Dietterich, Thomas, G. (2000). Ensemble methods in machine learning. In International workshop on multiple classifier systems (pp. 1–15). Springer.

  12. Hong, G. S., Rahman, M., & Zhou, Q. (1996). Using neural network for tool condition monitoring based on wavelet decomposition. International Journal of Machine Tools and Manufacture, 36(5), 551–566.

    Article  Google Scholar 

  13. Hosny, K. M., Kassem, M. A., & Fouad, M. M. (2020). Classification of skin lesions into seven classes using transfer learning with alexnet. Journal of Digital Imaging, 33(5), 1325–1334.

    Article  Google Scholar 

  14. Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N.-C., Tung, C. C., & Liu, H. H. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 454(1971), 903–995.

  15. Kingma, D. P., & Ba, J.. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.

  16. Koenigsberger, F., & Tlusty, J. (1967). Machine tool structures. Oxford: Pergamon Press.

    Google Scholar 

  17. Krizhevsky, A. (2014) One weird trick for parallelizing convolutional neural networks. arXiv preprint arXiv:1404.5997.

  18. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 25, 1097–1105.

  19. Kuljanic, E., Totis, G., & Sortino, M. (2009). Development of an intelligent multisensor chatter detection system in milling. Mechanical Systems and Signal Processing, 23(5), 1704–1718.

    Article  Google Scholar 

  20. Kvinevskiy, I., Bedi, S., & Mann, S. (2020). Detecting machine chatter using audio data and machine learning. The International Journal of Advanced Manufacturing Technology, 108(11), 3707–3716.

    Article  Google Scholar 

  21. Lamraoui, M., Barakat, M., Thomas, M., & El Badaoui, M. (2015). Chatter detection in milling machines by neural network classification and feature selection. Journal of Vibration and Control, 21(7), 1251–1266.

    Article  Google Scholar 

  22. Liu, M.-K., Tran, Q. M., Qui, Y.-W., & Chung, C.-H. (2017). Chatter detection in milling process based on time-frequency analysis. In International manufacturing science and engineering conference, volume 50725, page V001T02A025. American Society of Mechanical Engineers.

  23. Li, X., Yang, H., Li, M., & Zheng, J. (2020). Fault diagnostics between different type of components: A transfer learning approach. Applied Soft Computing, 86, 105950.

    Article  Google Scholar 

  24. Mao, W., Ding, L., Tian, S., & Liang, X. (2020). Online detection for bearing incipient fault based on deep transfer learning. Measurement, 152, 107278.

    Article  Google Scholar 

  25. Opitz, H. (1979). Investigation and calculation of the chatter behavior of: Lathes and milling machines. Annals of the CIRP, 18, 335–342.

    Google Scholar 

  26. Pan, S. J., & Yang, Q. (2009). A survey on transfer learning. IEEE Transactions on knowledge and data engineering, 22(10), 1345–1359.

    Article  Google Scholar 

  27. Pislaru, C., Freeman, J. M., & Derek G. F. (2003). Modal parameter identification for CNC machine tools using wavelet transform. International Journal of Machine Tools and Manufacture,43(10), 987–993.

  28. Postel, M., Bugdayci, B., & Wegener, K. (2020). Ensemble transfer learning for refining stability predictions in milling using experimental stability states. The International Journal of Advanced Manufacturing Technology, 107(9), 4123–4139.

    Article  Google Scholar 

  29. Rhu, M., Gimelshein, N., Clemons, J., Zulfiqar, A., Stephen, W., & Keckler. (2016). vdnn: Virtualized deep neural networks for scalable, memory-efficient neural network design. In 2016 49th annual IEEE/ACM international symposium on microarchitecture (MICRO), (pp. 1–13). IEEE.

  30. Sarkar, D., Bali, R., & Ghosh, T. (2018). Hands-on transfer learning with Python: Implement advanced deep learning and neural network models using TensorFlow and Keras. Packt Publishing Ltd

  31. Schmitz, T. L., & Scott, K. (2014). Smith. Machining dynamics. Springer.

  32. Schmitz, T. L., Davies, M. A., & Kennedy, M. D. (2001). Tool point frequency response prediction for high-speed machining by RCSA. Journal of Manufacturing Science and Engineering, 123(4), 700–707, 01.

    Google Scholar 

  33. Sener, Batihan, Gudelek, M Ugur, Ozbayoglu, A Murat, & Unver, Hakki Ozgur. (2021). A novel chatter detection method for milling using deep convolution neural networks. Measurement, page 109689.

  34. Shrivastava, Y., & Singh, B. (2021). Tool chatter prediction based on empirical mode decomposition and response surface methodology. Measurement,173, 108585.

  35. Smith, S., & Tlusty, J. (1991). An overview of modeling and simulation of the milling process. Journal of Manufacturing Science and Engineering, 113(2), 169–175.

    Google Scholar 

  36. Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. Information Processing and Management, 45(4), 427–437.

    Article  Google Scholar 

  37. Sun, S., Zhang, T., Li, Q., Wang, J., Zhang, W., Wen, Z., & Tang, Y. (2020). Fault diagnosis of conventional circuit breaker contact system based on time-frequency analysis and improved alexnet. IEEE Transactions on Instrumentation and Measurement.

  38. Sun, H., Zhang, X., & Wang, J. (2016). Online machining chatter forecast based on improved local mean decomposition. The International Journal of Advanced Manufacturing Technology, 84(5–8), 1045–1056.

    Google Scholar 

  39. Tangjitsitcharoen, S., Saksri, T., & Ratanakuakangwan, S. (2015). Advance in chatter detection in ball end milling process by utilizing wavelet transform. Journal of Intelligent Manufacturing, 26(3), 485–499.

    Article  Google Scholar 

  40. Tarng, Y. S., & Chen, M. C. (1994). An intelligent sensor for detection of milling chatter. Journal of Intelligent Manufacturing, 5(3), 193–200.

    Article  Google Scholar 

  41. Teti, R., Jemielniak, K., O’Donnell, G., & Dornfeld, D. (2010). Advanced monitoring of machining operations. CIRP Annals,59(2), 717–739.

  42. Tran, M.-Q., Liu, M.-K., & Tran, Q.-V. (2020). Milling chatter detection using scalogram and deep convolutional neural network. The International Journal of Advanced Manufacturing Technology, 107 1–12.

  43. Vashisht, R. K., & Peng, Q. (2021). Online chatter detection for milling operations using LSTM neural networks assisted by motor current signals of ball screw drives. Journal of Manufacturing Science and Engineering,143(1), 011008

  44. Wan, S., Li, X., Yin, Y., & Hong, J. (2021). Milling chatter detection by multi-feature fusion and adaboost-svm. Mechanical Systems and Signal Processing,156, 107671.

  45. Wang, J., Zou, B., Liu, M., Li, Y., Ding, H., Xue, K. et al. (2020). Milling force prediction model based on transfer learning and neural network. Journal of Intelligent Manufacturing, 32, 947–956.

  46. Wan, Z., Yang, R., Huang, M., Zeng, N., & Liu, X. (2021). A review on transfer learning in EEG signal analysis. Neurocomputing, 421, 1–14.

    Article  Google Scholar 

  47. Yang, K., Wang, G., Dong, Y., Zhang, Q., & Sang, L. (2019). Early chatter identification based on an optimized variational mode decomposition. Mechanical Systems and Signal Processing, 115, 238–254.

    Article  Google Scholar 

  48. Yang, F., Zhang, Y., Zhou, H., Li, D., Liu, H., Qiao, H., & Wang, X. (2016). Timely online chatter detection in end milling process. Mechanical Systems and Signal Processing, 75, 668–688.

    Article  Google Scholar 

  49. Yesilli, M. C., Khasawneh, F. A., & Otto, A. (2020). On transfer learning for chatter detection in turning using wavelet packet transform and ensemble empirical mode decomposition. CIRP Journal of Manufacturing Science and Technology, 28, 118–135.

    Article  Google Scholar 

  50. Yuan, J., Shao, H., Cai, Y., & Shi, X. (2021). Energy efficiency state identification of milling processing based on eemd-pca-ica. Measurement,174, 109014.

  51. Zeiler, A., Faltermeier, R., Keck, I. R., Tomé, A. M., Puntonet, C. G., & Lang, E. W. (2010). Empirical mode decomposition—an introduction. In The 2010 international joint conference on neural networks (IJCNN), (pp. 1–8).

  52. Zhao, K., Jiang, H., Zhenghong, W., & Tengfei, L. (2020). A novel transfer learning fault diagnosis method based on manifold embedded distribution alignment with a little labeled data. Journal of Intelligent Manufacturing,

  53. Zhu, L., & Liu, C. (2020). Recent progress of chatter prediction, detection and suppression in milling. Mechanical Systems and Signal Processing,143, 106840.

  54. Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H., & He, Q. (2020). A comprehensive survey on transfer learning. Proceedings of the IEEE, 109(1), 43–76.

  55. Zhu, K., Wong, Y. S., & Hong, G. S. (2009). Wavelet analysis of sensor signals for tool condition monitoring: A review and some new results. International Journal of Machine Tools and Manufacture, 49(7–8), 537–553.

    Article  Google Scholar 

  56. Zhu, W., Zhuang, J., Guo, B., Teng, W., & Fenghe, W. (2020). An optimized convolutional neural network for chatter detection in the milling of thin-walled parts. The International Journal of Advanced Manufacturing Technology, 106(9–10), 3881–3895.

    Article  Google Scholar 

Download references


The authors are thankful to Prof. Dr. Yusuf Altıntaş for his support in the dynamic characterization of the CNC-machine tool. This project is supported by TUBITAK (The Scientific and Technological Research Council of Turkey) 1001 program (No. 118M414).

Author information



Corresponding author

Correspondence to Hakki Ozgur Unver.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Unver, H.O., Sener, B. A novel transfer learning framework for chatter detection using convolutional neural networks. J Intell Manuf (2021).

Download citation


  • Transfer learning
  • Chatter detection
  • CNN
  • EEMD