An approach for designing smart manufacturing for the research and development of dye-sensitize solar cell

Abstract

The research and development (R&D) of the scale-up process of third-generation photovoltaics (PVs) can benefit from the emerging trends and technologies related to the Industrial Internet of Things. However, to migrate the small-scale laboratory PVs products to a larger version of the industrial scale, a processing platform is needed to design, fabricate, and test the production line. In this paper, after a brief introduction of the production process of thin-film PVs, specifically dye-sensitized solar cells, the Industrial Internet Reference Architecture (IIRA) has been applied to the R&D scenario for the production of thin-film PVs, in order to synchronize and manage the large amount of data generated by the real, virtual or hybrid production devices and processes. The results of this study suggest that the future implementation of IIRA is a reliable option in a learning factory environment for multidisciplinary collaboration, research training in novel technologies and methods in the Tijuana Institute of Technology. This contribution is in order to optimize and scale-up the production process of a new generation of solar cells.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Abele, E., Chryssolouris, G., Sihn, W., Metternich, J., ElMaraghy, H., Seliger, G., et al. (2017). Learning factories for future oriented research and education in manufacturing. CIRP Annals, 66(2), 803–826.

    Article  Google Scholar 

  2. Abermann, S. (2013). Non-vacuum processed next generation thin film photovoltaics: Towards marketable efficiency and production of CZTS based solar cells. Solar Energy, 94, 37–70.

    Article  Google Scholar 

  3. Alonso-Perez, J. L., Reynoso-Soto, E. A., Trujillo-Navarrete, B., & Cazarez-Castro, N. R. (2017). Fabricación automatizada de películas delgadas compactas en el desarrollo de celdas solares tipo grätzel (Automated manufacturing of compact thin-films for the development of dye-sensitized solar cells). Revista de Tecnología e Innovación, 4(11), 36–42.

    Google Scholar 

  4. Babiceanu, R. F., & Seker, R. (2016). Big data and virtualization for manufacturing cyber-physical systems: A survey of the current status and future outlook. Computers in Industry, 81, 128–137.

    Article  Google Scholar 

  5. Bartłomiej, M., & Pikoń, K. (2018). The environmental and technological evaluation of dyed DSSC cells production. In K. Mudryk, & S. Werle (Eds.), Renewable energy sources: Engineering, technology, innovation (pp. 309–319). Springer International Publishing.

  6. Boyes, H., Hallaq, B., Cunningham, J., & Watson, T. (2018). The industrial internet of things (IIoT): An analysis framework. Computers in Industry, 101, 1–12.

    Article  Google Scholar 

  7. Braune, A., Diedrich, C., Grüner, S., Huettemann, G., Klein, M., Legat, C., Lieke, M., Löwen, U., Thron, M., Usländer, T., Belyaev, A., Okon, M., Walter, G., & Stephan, G. (2019). Usage view of asset administration shell, brochure, pp. 7–10

  8. Cheng, Y., Zhang, Y., Ji, P., Xu, W., Zhou, Z., & Tao, F. (2018). Cyber-physical integration for moving digital factories forward towards smart manufacturing: A survey. The International Journal of Advanced Manufacturing Technology, 97, 1209–1221.

    Article  Google Scholar 

  9. Diab, W., Harper, K., Lin, D. -W., & Sobel, W. (2017). Industrial analytics: The engine driving the IIoI revolution. IIC technical white paper.

  10. Dumitrascu, A., Nae, L., & Predincea, N. (2014). Virtual commissioning a final step in digital validation on the robotic manufacturing systems. Journal Proceedings in Manufacturing Systems, 9(4), 215–220.

    Google Scholar 

  11. Eriksson, T., Bigi, A., & Bonera, M. (2020). Think with me, or think for me? On the future role of artificial intelligence in marketing strategy formulation. The TQM Journal, 32(4), 795–814.

    Article  Google Scholar 

  12. Fraile, F., Sanchis, R., Poler, R., & Ortiz, A. (2019). Reference models for digital manufacturing platforms. Applied Sciences, 9(20), 4433.

    Article  Google Scholar 

  13. Hoffmann, P., Schumann, R., Maksoud, T. M. A., & Premier, G. C. (2010). Virtual commissioning of manufacturing systems a review and new approaches for simplification. In Proceedings of 24th European conference on modelling and simulation, ECMS 2010 (pp. 175–181).

  14. Hösel, M., Dam, H. F., & Krebs, F. C. (2015). Development of lab-to-fab production equipment across several length scales for printed energy technologies, including solar cells. Energy Technology, 3(4), 293–304.

    Article  Google Scholar 

  15. Huang, S.-H., & Pan, Y.-C. (2015). Automated visual inspection in the semiconductor industry: A survey. Computers in Industry, 66, 1–10.

    Article  Google Scholar 

  16. Ito, S., Murakami, T. N., Comte, P., Liska, P., Grätzel, C., Nazeeruddin, M. K., et al. (2008). Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%. Thin Solid Films, 516(14), 4613–4619.

    Article  Google Scholar 

  17. Lin, S., Durand, B., Bleakley, G., Chigani, A., Martin, R., Murphy, B., & Crawford, M. (2019). The industrial internet of things volume g1: Reference architecture. IIC technical white paper.

  18. Löwen, U., Braune, A., Diesner, M., Huettemann, G., Klein, M., Thron, M., Manger, T., Okon, M., & Kochseder, R. (2017). Exemplification of the industrie 4.0 application scenario value-based service following IIRA structure.

  19. Mariani, P., Vesce, L., & Carlo, A. D. (2015). The role of printing techniques for large-area dye sensitized solar cells. Semiconductor Science and Technology, 30(10), 104003.

    Article  Google Scholar 

  20. Mavrikios, D., Papakostas, N., Mourtzis, D., & Ghryssolouris, G. (2013). On industrial learning and training for the factories of the future: A conceptual, cognitive and technology framework. Journal of Intelligent Manufacturing, 24(3), 473–485.

    Article  Google Scholar 

  21. Milichko, V. A., Shalin, A. S., Mukhin, I. S., Kovrov, A. E., Krasilin, A. A., Vinogradov, A. V., et al. (2016). Solar photovoltaics: Current state and trends. Physics-Uspekhi, 59(8), 727–772.

    Article  Google Scholar 

  22. Nakaruk, A., & Sorrell, C. C. (2010). Conceptual model for spray pyrolysis mechanism: Fabrication and annealing of titania thin films. Journal of Coatings Technology and Research, 7, 665–676.

    Article  Google Scholar 

  23. Nelson, B., Robbins, S., & Sheldon, P. (2005). The NCPV process integration project: Purpose, status, and direction. Conference Record of the Thirty-First IEEE Photovoltaic Specialists Conference, 2005, 243–246.

    Article  Google Scholar 

  24. Okuya, M., Nakade, K., & Kaneko, S. (2002). Porous TiO\(_2\) thin films synthesized by a spray pyrolysis deposition (SPD) technique and their application to dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 70(4), 425–435.

  25. Pedone, G., & Mezgár, I. (2018). Model similarity evidence and interoperability affinity in cloud-ready industry 4.0 technologies. Computers in Industry, 100, 278–286.

    Article  Google Scholar 

  26. Penumuru, D., Mathuswamy, S., & Karumbu, P. (2020). Identification and classification of materials using machine vision and machine learning in the context of industry 4.0. Journal of Intelligent Manufacturing, 31, 1229–1241.

    Article  Google Scholar 

  27. Perednis, D., & Gauckler, L. J. (2005). Thin film deposition using spray pyrolysis. Journal of Electroceramics, 14, 103–111.

    Article  Google Scholar 

  28. Reynoso-Soto, E. A., Alonso-Perez, J. L., Trujillo-Navarrete, B., & Cazarez-Castro, N. R. (2016). Automatización en la deposición de películas delgadas de nanomateriales para la posible utilización en celdas solares (Automatization in the deposition of nanomaterial-based thin-films for the potential use in solar cells). Revista de Tecnología e Innovación, 3(7), 51–59.

    Google Scholar 

  29. Tao, F., Cheng, J., Qi, Q., Zhang, M., Zhang, H., & Sui, F. (2018). Digital twin-driven product design, manufacturing and service with big data. The International Journal of Advanced Manufacturing Technology, 94, 3563–3576.

    Article  Google Scholar 

  30. Vak, D., Hwang, K., Faulks, A., Jung, Y.-S., Clark, N., Kim, D.-Y., et al. (2015). 3d printer based slot-die coater as a lab-to-fab translation tool for solution-processed solar cells. Advanced Energy Materials, 5(4), 1401539.

    Article  Google Scholar 

  31. Velásquez, N., Estevez, E., & Pesado, P. (2018). Cloud computing, big data and the industry 4.0 reference architectures. Journal of Computer Science and Technology, 18(03), e29.

    Article  Google Scholar 

  32. Weyer, S., Meyer, T., Ohmer, M., Gorecky, D., & Zühlke, D. (2016). Future modeling and simulation of CPS-based factories: An example from the automotive industry. IFAC-PapersOnLine, 49(31), 97–102.

    Article  Google Scholar 

  33. Yaho, X., Zhou, J., Lin, Y., Li, Y., Yu, H., & Liu, Y. (2019). Smart manufacturing based on cyber-physical systems and beyond. Journal of Intelligent Manufacturing, 30(8), 2805–20817.

    Article  Google Scholar 

  34. Zaheer, A., & George, K. (2018). Automated dye-sensitized solar cell manufacturing system with IoT monitoring. In 2018 9th IEEE annual ubiquitous computing, electronics mobile communication conference (UEMCON) (pp. 917–921).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nohe R. Cazarez-Cazarez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was partially financed in the framework of the following prejects: (i) Selene L. Cardenas-Maciel, Tecnológico Nacional de México, 11122.21-P; (ii) Nohe R. Cazarez-Castro, Tecnológico Nacional de México, 5564.19-P and 8085.20-P; and (iii) Edgar A. Reynoso-Soto, Consejo Nacional de Ciencia y Tecnología, PN-2015-92. Jorge L. Alonso-Perez would like to thank Consejo Nacional de Ciencia y Tecnología for the doctor of science scholarship.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alonso-Perez, J.L., Cardenas-Maciel, S.L., Trujillo-Navarrete, B. et al. An approach for designing smart manufacturing for the research and development of dye-sensitize solar cell. J Intell Manuf (2021). https://doi.org/10.1007/s10845-021-01794-z

Download citation

Keywords

  • Thin-film solar cells
  • DSSC manufacturing
  • IIoT
  • IIRA
  • Learning factory
  • Big Data Analytics