Skip to main content

Advertisement

Log in

Online monitoring and control of a cyber-physical manufacturing process under uncertainty

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

Recent technological advancements in computing, sensing and communication have led to the development of cyber-physical manufacturing processes, where a computing subsystem monitors the manufacturing process performance in real-time by analyzing sensor data and implements the necessary control to improve the product quality. This paper develops a predictive control framework where control actions are implemented after predicting the state of the manufacturing process or product quality at a future time using process models. In a cyber-physical manufacturing process, the product quality predictions may be affected by uncertainty sources from the computing subsystem (resource and communication uncertainty), manufacturing process (input uncertainty, process variability and modeling errors), and sensors (measurement uncertainty). In addition, due to the continuous interactions between the computing subsystem and the manufacturing process, these uncertainty sources may aggregate and compound over time. In some cases, some process parameters needed for model predictions may not be precisely known and may need to be derived from real time sensor data. This paper develops a dynamic Bayesian network approach, which enables the aggregation of multiple uncertainty sources, parameter estimation and robust prediction for online control. As the number of process parameters increase, their estimation using sensor data in real-time can be computationally expensive. To facilitate real-time analysis, variance-based global sensitivity analysis is used for dimension reduction. The proposed methodology of online monitoring and control under uncertainty, and dimension reduction, are illustrated for a cyber-physical turning process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. All the codes used in this example can be found at https://github.com/Saideep259/JIM20.

References

  • Abdelmaguid, T. F., & El-hossainy, T. M. (2012). Optimal cutting parameters for turning operations with costs of quality and tool wear compensation. In: Proceedings of the 2012 international conference on industrial engineering and operations management, Istanbul, Turkey, July 3–6 (pp. 924–932).

  • Arul, S., Vijayaraghavan, L., & Malhotra, S. K. (2007). Online monitoring of acoustic emission for quality control in drilling of polymeric composites. Journal of Materials Processing Technology, 185, 184–190.

    Article  Google Scholar 

  • Arulampalam, M., Maskell, S., Gordon, N., & Clapp, T. (2002). A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing, 50, 174–188.

    Article  Google Scholar 

  • Bhinge, R., Park, J., Law, K., Dornfeld, D., Helu, M., & Rachuri, S. (2017). Toward a generalized energy prediction model for machine tools. Journal of Manufacturing Science and Engineering, 139, 041013.

    Article  Google Scholar 

  • Dubey, A., Karsai, G., & Mahadevan, N. (2011). A component model for hard real-time systems: CCM with ARINC-653. Software: Practice and Experience, 41, 1517–1550.

    Google Scholar 

  • Dulman, S., Nieberg, T., Wu, J., & Havinga, P. (2003). Trade-off between traffic overhead and reliability in multipath routing for wireless sensor networks. In IEEE wireless communications and networking conference, WCNC (pp. 1918–1922). https://doi.org/10.1109/WCNC.2003.1200680.

  • El Baradie, M. (1996). The effect of varying the workpiece diameter on the cutting tool clearance angle in tool-life testing. Wear, 1, 201–205.

    Article  Google Scholar 

  • Gonzaga, J. C. B., Meleiro, L. A. C., Kiang, C., & Maciel Filho, R. (2009). ANN-based soft-sensor for real-time process monitoring and control of an industrial polymerization process. Computers & Chemical Engineering, 33, 43–49.

    Article  Google Scholar 

  • Grossman, R., Bailey, S., Ramu, A., Malhi, B., Hallstrom, P., Pulleyn, I., et al. (1999). The management and mining of multiple predictive models using the predictive modeling markup language. Information and Software Technology, 41, 589–595. https://doi.org/10.1016/S0950-5849(99)00022-1.

    Article  Google Scholar 

  • Hatefi, S., & Abou-El-Hossein, K. (2020). Review of single-point diamond turning process in terms of ultra-precision optical surface roughness. International Journal of Advanced Manufacturing Technology, 106, 2167–2187. https://doi.org/10.1007/s00170-019-04700-3.

    Article  Google Scholar 

  • Hoang, D. T., Niyato, D., & Wang, P. (2012). Optimal admission control policy for mobile cloud computing hotspot with cloudlet. In IEEE wireless communications and networking conference, WCNC (pp. 3145–3149). https://doi.org/10.1109/WCNC.2012.6214347.

  • Karandikar, J., Abbas, A., & Schmitz, T. (2014). Tool life prediction using Bayesian updating. Part 2: Turning tool life using a Markov Chain Monte Carlo approach. Precision Engineering, 38, 18–27.

    Article  Google Scholar 

  • Kavaratzis, Y., & Maiden, J. D. (1990). Real time process monitoring and adaptive control during CNC deep hole drilling. International Journal of Production Research, 28, 2201–2218. https://doi.org/10.1080/00207549008942862.

    Article  Google Scholar 

  • Khan, S. A., Nazir, A., Mughal, M. P., Saleem, M. Q., Hussain, A., & Ghulam, Z. (2017). Deep hole drilling of AISI 1045 via high-speed steel twist drills: Evaluation of tool wear and hole quality. International Journal of Advanced Manufacturing Technology, 93, 1115–1125. https://doi.org/10.1007/s00170-017-0587-4.

    Article  Google Scholar 

  • Kim, D. W., Lee, Y. S., Park, M. S., & Chu, C. N. (2009). Tool life improvement by peck drilling and thrust force monitoring during deep-micro-hole drilling of steel. International Journal of Machine Tools and Manufacture, 49, 246–255. https://doi.org/10.1016/j.ijmachtools.2008.11.005.

    Article  Google Scholar 

  • Kovac, P., Rodic, D., Pucovsky, V., Savkovic, B., & Gostimirovic, M. (2013). Application of fuzzy logic and regression analysis for modeling surface roughness in face milliing. Journal of Intelligent Manufacturing, 24, 755–762. https://doi.org/10.1007/s10845-012-0623-z.

    Article  Google Scholar 

  • Lee, J., Bagheri, B., & Jin, C. (2016). Introduction to cyber manufacturing. Manufacturing Letters, 8, 11–15. https://doi.org/10.1016/j.mfglet.2016.05.002.

    Article  Google Scholar 

  • Lee, D., Hwang, I., Valente, C., Oliveira, J., & Dornfeld, D. (2006). Precision manufacturing process monitoring with acoustic emission. In L. Wang & R. X. Gao (Eds.), Condition monitoring and control for intelligent manufacturing (pp. 33–54). Berlin: Springer.

    Chapter  Google Scholar 

  • Li, C., & Mahadevan, S. (2016). An efficient modularized sample-based method to estimate the first-order Sobol index. Reliability Engineering and System Safety, 153, 110–121. https://doi.org/10.1016/j.ress.2016.04.012.

    Article  Google Scholar 

  • Liu, X. F., Shahriar, M. R., Al Sunny, S. M. N., Leu, M. C., & Hu, L. (2017). Cyber-physical manufacturing cloud: Architecture, virtualization, communication, and testbed. Journal of Manufacturing Systems, 43, 352–364. https://doi.org/10.1016/j.jmsy.2017.04.004.

    Article  Google Scholar 

  • Lotfi, M., Akhavan Farid, A., & Soleimanimehr, H. (2015). The effect of chip breaker geometry on chip shape, bending moment, and cutting force: FE analysis and experimental study. International Journal of Advanced Manufacturing Technology, 78, 917–925. https://doi.org/10.1007/s00170-014-6676-8.

    Article  Google Scholar 

  • Lynn, R., Wescoat, E., Han, D., & Kurfess, T. (2018). Embedded fog computing for high-frequency MTConnect data analytics. Manufacturing Letters, 15, 135–138. https://doi.org/10.1016/j.mfglet.2017.11.002.

    Article  Google Scholar 

  • Maji, K., & Pratihar, D. K. (2010). Forward and reverse mappings of electrical discharge machining process using adaptive network-based fuzzy inference system. Expert Systems with Applications, 37, 8566–8574. https://doi.org/10.1016/j.eswa.2010.05.019.

    Article  Google Scholar 

  • Mehta, P., Kuttolamadom, M., & Mears, L. (2017). Mechanistic force model for machining process—Theory and application of Bayesian inference. The International Journal of Advanced Manufacturing Technology, 91, 3673–3682. https://doi.org/10.1007/s00170-017-0064-0.

    Article  Google Scholar 

  • Mohd Adnan, M. R. H., Sarkheyli, A., Mohd Zain, A., & Haron, H. (2015). Fuzzy logic for modeling machining process: A review. Artificial Intelligence Review, 43, 345–379. https://doi.org/10.1007/s10462-012-9381-8.

    Article  Google Scholar 

  • Mosallam, A., Medjaher, K., & Zerhouni, N. (2016). Data-driven prognostic method based on Bayesian approaches for direct remaining useful life prediction. Journal of Intelligent Manufacturing, 27, 1037–1048. https://doi.org/10.1007/s10845-014-0933-4.

    Article  Google Scholar 

  • Murphy, K. P. (2002). Dynamic bayesian networks: Representation, inference and learning. Berkeley: University of California.

    Google Scholar 

  • Nalbant, M., Gökkaya, H., Toktaş, I., & Sur, G. (2009). The experimental investigation of the effects of uncoated, PVD- and CVD-coated cemented carbide inserts and cutting parameters on surface roughness in CNC turning and its prediction using artificial neural networks. Robotics and Computer-Integrated Manufacturing, 25, 211–223. https://doi.org/10.1016/j.rcim.2007.11.004.

    Article  Google Scholar 

  • Nannapaneni, S., Dubey, A., & Mahadevan, S. (2017a). Performance evaluation of smart systems under uncertainty. In 2017 IEEE SmartWorld, ubiquitous intelligence & computing, advanced & trusted computed, scalable computing & communications, cloud & big data computing, internet of people and smart city innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI) (pp. 1–8).

  • Nannapaneni, S., & Mahadevan, S. (2016). Manufacturing process evaluation under uncertainty: A hierarchical bayesian network approach. In Proceedings of the ASME 2016 international design engineering technical conferences and computers and information in engineering conference (p. V01BT02A026).

  • Nannapaneni, S., Mahadevan, S., Dubey, A., Lechevalier, D., Narayanan, A., & Rachuri, S. (2017b). Automated uncertainty quantification through information fusion in manufacturing processes. Smart and Sustainable Manufacturing Systems, 1, 153–177.

    Article  Google Scholar 

  • Nannapaneni, S., Mahadevan, S., & Rachuri, S. (2016). Performance evaluation of a manufacturing process under uncertainty using Bayesian networks. Journal of Cleaner Production, 113, 947–959.

    Article  Google Scholar 

  • Nannapaneni, S., Narayanan, A., Ak, R., Lechevalier, D., Sexton, T., Mahadevan, S., et al. (2018). Predictive model markup language (PMML) representation of Bayesian networks: An application in manufacturing. Smart and Sustainable Manufacturing Systems, 2, 87–113.

    Article  Google Scholar 

  • Park, J., Lechevalier, D., Ak, R., Ferguson, M., Law, K., Lee, Y., et al. (2017). Gaussian process regression (GPR) representation in predictive model markup language (PMML). Smart and Sustainable Manufacturing Systems, 1, 121–141.

    Article  Google Scholar 

  • Park, H., Rhee, S., & Kim, D. (2001). A fuzzy pattern recognition based system for monitoring laser weld quality. Measurement Science & Technology, 12, 1318. https://doi.org/10.1088/0957-0233/12/8/345.

    Article  Google Scholar 

  • Pehlken, A., Decker, A., Kottowski, C., & Kirchner, A. (2015). Energy efficiency in processing of natural raw materials under consideration of uncertainties. Journal of Cleaner Production, 106, 351–363.

    Article  Google Scholar 

  • Rao, P., Bukkapatnam, S., Beyca, O., Kong, Z., & Komanduri, R. (2014). Real-time identification of incipient surface morphology variations in ultraprecision machining process. Journal of Manufacturing Science and Engineering, 136, 021008.

    Article  Google Scholar 

  • Rao, P., Liu, J., Roberson, D., Kong, Z., & Williams, C. (2015). Online real-time quality monitoring in additive manufacturing processes using heterogeneous sensors. Journal of Manufacturing Science and Engineering, 137, 61007.

    Article  Google Scholar 

  • Ray, S., Starobinski, D., & Carruthers, J. (2005). Performance evaluation of wireless network in presence of hidden node: A queuing theory approach. Computer Communications, 28, 1179–1192.

    Article  Google Scholar 

  • Reza, B., Sadiq, R., & Hewage, K. (2013). A fuzzy-based approach for characterization of uncertainties in emergy synthesis: An example of paved road system. Journal of Cleaner Production, 59, 99–110.

    Article  Google Scholar 

  • Saeys, Y., Inza, I., & Larrañaga, P. (2007). A review of feature selection techniques in bioinformatics. Bioinformatics, 23, 2507–2517.

    Article  Google Scholar 

  • Saltelli, A., Tarantola, S., & Chan, K. (1999). A quantitative model-independent method for global sensitivity analysis of model output. Technometrics, 41, 39–56.

    Article  Google Scholar 

  • Scutari, M. (2010). Learning Bayesian networks with the bnlearn R Package. Journal of Statistical Software, 35, 1–22.

    Article  Google Scholar 

  • Sobol’, I. (2001). Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Mathematics and Computers in Simulation, 55, 271–280. https://doi.org/10.1016/S0378-4754(00)00270-6.

    Article  Google Scholar 

  • Sparkman, D., Garza, J., Millwater Jr, H., & Smarslok, B. (2016). Importance sampling-based post-processing method for global sensitivity analysis. In Proceedings of the 18th AIAA non-deterministic approaches conference.

  • Syn, C. Z., Mokhtar, M., Feng, C. J., & Manurung, Y. H. P. (2011). Approach to prediction of laser cutting quality by employing fuzzy expert system. Expert Systems with Applications, 38, 7558–7568. https://doi.org/10.1016/j.eswa.2010.12.111.

    Article  Google Scholar 

  • Tarantola, S., Gatelli, D., & Mara, T. (2006). Random balance designs for the estimation of first order global sensitivity indices. Reliability Engineering & System Safety, 91, 717–727.

    Article  Google Scholar 

  • Tobon-Mejia, D. A., Medjaher, K., & Zerhouni, N. (2012). CNC machine tool’s wear diagnostic and prognostic by using dynamic Bayesian networks. Mechanical Systems and Signal Processing, 28, 167–182.

    Article  Google Scholar 

  • Vijayaraghavan, A., Sobel, W., Fox, A., Dornfeld, D., & Warndorf, P. (2008). Improving machine tool interoperability using standardized interface protocols: MT connect. In 2008 international symposium and flexible automation.

  • Vundavilli, P. R., Parappagoudar, M. B., Kodali, S. P., & Benguluri, S. (2012). Fuzzy logic-based expert system for prediction of depth of cut in abrasive water jet machining process. Knowledge-Based Systems, 27, 456–464. https://doi.org/10.1016/j.knosys.2011.10.002.

    Article  Google Scholar 

  • Wang, B., & Yan, X. (2019). Real-time monitoring of chemical processes based on variation information of principal component analysis model. Journal of Intelligent Manufacturing, 30, 795–808.

    Article  Google Scholar 

  • Wang, J., Gao, R. X., Yuan, Z., Fan, Z., & Zhang, L. (2019). A joint particle filter and expectation maximization approach to machine condition prognosis. Journal of Intelligent Manufacturing, 30, 605–621. https://doi.org/10.1007/s10845-016-1268-0.

    Article  Google Scholar 

  • Weber, P., & Jouffe, L. (2006). Complex system reliability modelling with dynamic object oriented Bayesian networks (DOOBN). Reliability Engineering & System Safety, 1, 149–162.

    Article  Google Scholar 

  • Wu, D., Greer, M. J., Rosen, D. W., & Schaefer, D. (2013). Cloud manufacturing: Strategic vision and state-of-the-art. Journal of Manufacturing Systems, 32, 564–579. https://doi.org/10.1016/j.jmsy.2013.04.008.

    Article  Google Scholar 

  • Wu, D., Liu, S., Zhang, L., Terpenny, J., Gao, R. X., Kurfess, T., et al. (2017). A fog computing-based framework for process monitoring and prognosis in cyber-manufacturing. Journal of Manufacturing Systems, 43, 25–34.

    Article  Google Scholar 

  • Xu, X. (2012). From cloud computing to cloud manufacturing. Robotics and Computer-Integrated Manufacturing, 28, 75–86. https://doi.org/10.1016/j.rcim.2011.07.002.

    Article  Google Scholar 

  • Yih-Fong, T. (2006). Parameter design optimisation of computerised numerical control turning tool steels for high dimensional precision and accuracy. Materials and Design, 27, 665–675. https://doi.org/10.1016/j.matdes.2004.09.029.

    Article  Google Scholar 

  • Yildiz, Y., & Nalbant, M. (2008). A review of cryogenic cooling in machining processes. International Journal of Machine Tools and Manufacture, 48, 947–964. https://doi.org/10.1016/j.ijmachtools.2008.01.008.

    Article  Google Scholar 

  • Zhang, Y., Xi, D., Yang, H., Tao, F., & Wang, Z. (2019). Cloud manufacturing based service encapsulation and optimal configuration method for injection molding machine. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-017-1322-6.

    Article  Google Scholar 

Download references

Acknowledgements

The research presented in this paper was supported by funds from the National Institute of Standards and Technology (NIST) under the Smart Manufacturing Data Analytics Project (Cooperative Agreement No. 70NANB16H297). The support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saideep Nannapaneni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Disclaimer: Certain commercial systems are identified in this paper. Such identification does not imply recommendation or endorsement by NIST; nor does it imply that the products identified are necessarily the best available for the purpose. Further, any opinions, findings, conclusions, or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of NIST or any other supporting U.S. government or corporate organizations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nannapaneni, S., Mahadevan, S., Dubey, A. et al. Online monitoring and control of a cyber-physical manufacturing process under uncertainty. J Intell Manuf 32, 1289–1304 (2021). https://doi.org/10.1007/s10845-020-01609-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-020-01609-7

Keywords

Navigation