Al-Zubaidi, S., Ghani, J. A., & Haron, C. H. C. (2011). Application of ANN in milling process: A review. Modelling and Simulation in Engineering,2011, 7. https://doi.org/10.1155/2011/696275.
Article
Google Scholar
Armarego, E. J. A., & Deshpande, N. P. (1991). Computerized end-milling force predictions with cutting models allowing for eccentricity and cutter deflections. CIRP Annals,40(1), 25–29. https://doi.org/10.1016/S0007-8506(07)61926-X.
Article
Google Scholar
Briceno, J. F., El-Mounayri, H., & Mukhopadhyay, S. (2002). Selecting an artificial neural network for efficient modeling and accurate simulation of the milling process. International Journal of Machine Tools and Manufacture,42(6), 663–674. https://doi.org/10.1016/S0890-6955(02)00008-1.
Article
Google Scholar
Chen, S., Wu, Y., & Luk, B. L. (1999). Combined genetic algorithm optimization and regularized orthogonal least squares learning for radial basis function networks. IEEE Transactions on Neural Networks,10(5), 1239–1243. https://doi.org/10.1109/72.788663.
Article
Google Scholar
Chien, W. T., & Chou, C. Y. (2001). The predictive model for machinability of 304 stainless steel. Journal of Materials Processing Technology,118(1–3), 442–447. https://doi.org/10.1016/S0924-0136(01)00875-5.
Article
Google Scholar
Cus, F., & Balic, J. (2003). Optimization of cutting process by GA approach. Robotics and Computer-Integrated Manufacturing,19(1–2), 113–121. https://doi.org/10.1016/S0736-5845(02)00068-6.
Article
Google Scholar
Dang, J. W., Zhang, W. H., Yang, Y., & Wan, M. (2010). Cutting force modeling for flat end milling including bottom edge cutting effect. International Journal of Machine Tools and Manufacture,50(11), 986–997. https://doi.org/10.1016/j.ijmachtools.2010.07.004.
Article
Google Scholar
Dave, H. K., & Raval, H. K. (2010). Modelling of cutting forces as a function of cutting parameters in milling process using regression analysis and artificial neural network. International Journal of Machining and Machinability of Materials,8(1–2), 198–208. https://doi.org/10.1504/IJMMM.2010.034496.
Article
Google Scholar
Desai, K. A., Agarwal, P. K., & Rao, P. V. M. (2009). Process geometry modeling with cutter runout for milling of curved surfaces. International Journal of Machine Tools and Manufacture,49(12–13), 1015–1028. https://doi.org/10.1016/j.ijmachtools.2009.05.007.
Article
Google Scholar
Desai, K. A., & Rao, P. V. M. (2012). On cutter deflection surface errors in peripheral milling. Journal of Materials Processing Technology,212(11), 2443–2454. https://doi.org/10.1016/j.jmatprotec.2012.07.003.
Article
Google Scholar
Foresee, F. D., & Hagan, M. T. (1997). Gauss–Newton approximation to Bayesian learning. In Proceedings of international conference on neural networks (ICNN’97) (June) (Vol. 3, pp. 1930–1935). IEEE. https://doi.org/10.1109/icnn.1997.614194.
Hsieh, C. H., Chou, J. H., & Wu, Y. J. (2002). Optimal predicted fuzzy controller of a constant turning force system with fixed metal removal rate. Journal of Materials Processing Technology,123(1), 22–30. https://doi.org/10.1016/S0924-0136(02)00008-0.
Article
Google Scholar
Huang, P. B. (2016). An intelligent neural-fuzzy model for an in-process surface roughness monitoring system in end milling operations. Journal of Intelligent Manufacturing,27(3), 689–700. https://doi.org/10.1007/s10845-014-0907-6.
Article
Google Scholar
Huang, Z., Zhu, J., Lei, J., Li, X., & Tian, F. (2019). Tool wear predicting based on multi-domain feature fusion by deep convolutional neural network in milling operations. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-019-01488-7.
Article
Google Scholar
Ko, J. H., Yun, W. S., Cho, D. W., & Ehmann, K. F. (2002). Development of a virtual machining system, part 1: Approximation of the size effect for cutting force prediction. International Journal of Machine Tools and Manufacture,42(15), 1595–1605. https://doi.org/10.1016/S0890-6955(02)00137-2.
Article
Google Scholar
Law, K. M., Geddam, A., & Ostafiev, V. A. (1999). A process-design approach to error compensation in the end milling of pockets. Journal of Materials Processing Technology,89, 238–244. https://doi.org/10.1016/S0924-0136(99)00031-X.
Article
Google Scholar
Li, X. P., Nee, A. Y. C., Wong, Y. S., & Zheng, H. Q. (1999). Theoretical modeling and simulation of milling forces. Journal of Materials Processing Technology, 89, 266–272. https://doi.org/10.1016/S0924-0136(99)00076-X.
Article
Google Scholar
MacKay, D. J. (1992). Bayesian interpolation. Neural Computation,4(3), 415–447. https://doi.org/10.1162/neco.1992.4.3.415.
Article
Google Scholar
Malghan, R. L., Rao, K., Shettigar, A. K., Rao, S. S., & D’Souza, R. J. (2018). Forward and reverse mapping for milling process using artificial neural networks. Data in Brief,16, 114–121. https://doi.org/10.1016/j.dib.2017.10.069.
Article
Google Scholar
Martellotti, M. E. (1941). An analysis of the milling process. Transaction of the ASME,63(8), 677–700.
Google Scholar
Quintana, G., Garcia-Romeu, M. L., & Ciurana, J. (2011). Surface roughness monitoring application based on artificial neural networks for ball-end milling operations. Journal of Intelligent Manufacturing,22(4), 607–617. https://doi.org/10.1007/s10845-009-0323-5.
Article
Google Scholar
Radhakrishnan, T., & Nandan, U. (2005). Milling force prediction using regression and neural networks. Journal of Intelligent Manufacturing,16(1), 93–102. https://doi.org/10.1007/s10845-005-4826-4.
Article
Google Scholar
Tandon, V., & El-Mounayri, H. (2001). A novel artificial neural networks force model for end milling. The International Journal of Advanced Manufacturing Technology,18(10), 693–700. https://doi.org/10.1007/s001700170011.
Article
Google Scholar
Tandon, V., El-Mounayri, H., & Kishawy, H. (2002). NC end milling optimization using evolutionary computation. International Journal of Machine Tools and Manufacture,42(5), 595–605. https://doi.org/10.1016/S0890-6955(01)00151-1.
Article
Google Scholar
Wan, M., & Zhang, W. H. (2009). Systematic study on cutting force modelling methods for peripheral milling. International Journal of Machine Tools and Manufacture,49(5), 424–432. https://doi.org/10.1016/j.ijmachtools.2008.12.004.
Article
Google Scholar
Wan, M., Zhang, W. H., Qin, G. H., & Wang, Z. P. (2008). Consistency study on three cutting force modelling methods for peripheral milling. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture,222(6), 665–676. https://doi.org/10.1243/09544054JEM1085.
Article
Google Scholar
Wang, Q., Jia, X., Hu, B., & Xia, W. (2019). A mechanistic prediction model of instantaneous cutting forces in drilling of carbon fiber-reinforced polymer. The International Journal of Advanced Manufacturing Technology. https://doi.org/10.1007/s00170-019-03571-y.
Article
Google Scholar
Zhang, Z., Zheng, L., Zhang, L., Li, Z., Liu, D., & Zhang, B. (2005). A study on calibration of coefficients in end milling forces model. The International Journal of Advanced Manufacturing Technology,25(7–8), 652–662. https://doi.org/10.1007/s00170-003-1903-8.
Article
Google Scholar
Zuperl, U., & Cus, F. (2004). Tool cutting force modeling in ball-end milling using multilevel perceptron. Journal of Materials Processing Technology,153, 268–275. https://doi.org/10.1016/j.jmatprotec.2004.04.309.
Article
Google Scholar
Zuperl, U., Cus, F., & Reibenschuh, M. (2012). Modeling and adaptive force control of milling by using artificial techniques. Journal of Intelligent Manufacturing,23(5), 1805–1815. https://doi.org/10.1007/s10845-010-0487-z.
Article
Google Scholar