A state-of-the-art survey of Digital Twin: techniques, engineering product lifecycle management and business innovation perspectives

Abstract

With the rapid advancement of cyber-physical systems, Digital Twin (DT) is gaining ever-increasing attention owing to its great capabilities to realize Industry 4.0. Enterprises from different fields are taking advantage of its ability to simulate real-time working conditions and perform intelligent decision-making, where a cost-effective solution can be readily delivered to meet individual stakeholder demands. As a hot topic, many approaches have been designed and implemented to date. However, most approaches today lack a comprehensive review to examine DT benefits by considering both engineering product lifecycle management and business innovation as a whole. To fill this gap, this work conducts a state-of-the art survey of DT by selecting 123 representative items together with 22 supplementary works to address those two perspectives, while considering technical aspects as a fundamental. The systematic review further identifies eight future perspectives for DT, including modular DT, modeling consistency and accuracy, incorporation of Big Data analytics in DT models, DT simulation improvements, VR integration into DT, expansion of DT domains, efficient mapping of cyber-physical data and cloud/edge computing integration. This work sets out to be a guide to the status of DT development and application in today’s academic and industrial environment.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Abbreviations

AMQP:

Advanced message queuing protocol

BMs:

Business models

CoAP:

Constrained application protocol

CPS:

Cyber physical systems

DMFEA:

Design failure mode and effects analysis

DT:

Digital Twin

ERP:

Enterprise resource planning

FEM:

Finite element method

LabVIEW:

Laboratory virtual instrument engineering workbench

MES:

Manufacturing execution system

MQTT:

Message queuing telemetry transport

NTP:

Network time protocol

OMPL:

Open motion planning library

OPC UA:

Open platform communication unified architecture

OSI:

Open systems interconnection

PHM:

Prognostics and health management

PLC:

Programmable logic controller

PLM:

Product lifecycle management

PTP:

Precision time protocol

RAMI 4.0:

Reference architecture model Industry 4.0

SCADA:

Supervisory control and data acquisition

SHDR:

Simple hierarchical data representation

SOAP:

Simple object access protocol

STEP:

Standard for exchange of product model data

TCP/IP:

Transmission control protocol/ internet protocol

UDP:

User datagram protocol

VV&A:

Verification validation and accreditation

WirelessHART:

Wireless highway addressable remote transducer protocol

References

  1. Abramovici, M., Göbel, J. C., & Dang, H. B. (2016). Semantic data management for the development and continuous reconfiguration of smart products and systems. CIRP Annals - Manufacturing Technology,65(1), 185–188. https://doi.org/10.1016/j.cirp.2016.04.051.

    Article  Google Scholar 

  2. Adrodegari, F., Saccani, N., Kowalkowski, C., & Vilo, J. (2017). PSS business model conceptualization and application. Production Planning and Control,28(15), 1251–1263. https://doi.org/10.1080/09537287.2017.1363924.

    Article  Google Scholar 

  3. Alam, K. M., & El Saddik, A. (2017). C2PS: A digital twin architecture reference model for the cloud-based cyber-physical systems. IEEE Access,5, 2050–2062. https://doi.org/10.1109/ACCESS.2017.2657006.

    Article  Google Scholar 

  4. Angrish, A., Starly, B., Lee, Y. S., & Cohen, P. H. (2017). A flexible data schema and system architecture for the virtualization of manufacturing machines (VMM). Journal of Manufacturing Systems,45, 236–247. https://doi.org/10.1016/j.jmsy.2017.10.003.

    Article  Google Scholar 

  5. Arafsha, F., Laamarti, F., & El Saddik, A. (2019). Cyber-physical system framework for measurement and analysis of physical activities. Electronics,8(2), 248. https://doi.org/10.3390/electronics8020248.

    Article  Google Scholar 

  6. Ardanza, A., Moreno, A., Segura, Á., de la Cruz, M., & Aguinaga, D. (2019). Sustainable and flexible industrial human machine interfaces to support adaptable applications in the Industry 4.0 paradigm. International Journal of Production Research,57(12), 4045–4059. https://doi.org/10.1080/00207543.2019.1572932.

    Article  Google Scholar 

  7. Baden-Fuller, C., & Morgan, M. S. (2010). Business models as models. Long Range Planning,43(2–3), 156–171. https://doi.org/10.1016/j.lrp.2010.02.005.

    Article  Google Scholar 

  8. Bao, J., Guo, D., Li, J., & Zhang, J. (2018). The modelling and operations for the digital twin in the context of manufacturing. Enterprise Information Systems,13(4), 534–556. https://doi.org/10.1080/17517575.2018.1526324.

    Article  Google Scholar 

  9. Baruffaldi, G., Accorsi, R., Manzini, R., & Baruffaldi, G. (2019). Warehouse management system customization and information availability in 3pl companies: A decision-support tool. Industrial Management & Data Syatems. https://doi.org/10.1108/imds-01-2018-0033.

    Article  Google Scholar 

  10. Biancolini, M. E., & Cella, U. (2018). Radial basis functions update of digital models on actual manufactured shapes. Journal of Computational and Nonlinear Dynamics,14(2), 021013. https://doi.org/10.1115/1.4041680.

    Article  Google Scholar 

  11. Bilberg, A., & Malik, A. A. (2019). Digital twin driven human–robot collaborative assembly. CIRP Annals,68(1), 499–502. https://doi.org/10.1016/j.cirp.2019.04.011.

    Article  Google Scholar 

  12. Bolton, R. N., McColl-Kennedy, J. R., Cheung, L., Gallan, A., Orsingher, C., Witell, L., et al. (2018). Customer experience challenges: Bringing together digital, physical and social realms. Journal of Service Management. https://doi.org/10.1108/josm-04-2018-0113.

    Article  Google Scholar 

  13. Bottani, E., Cammardella, A., Murino, T., & Vespoli, S. (2017). From the cyber-physical system to the digital twin: the process development for behaviour modelling of a cyber guided vehicle in M2M logic. XXII Summer School Francesco TurcoIndustrial Systems Engineering, 1–7.

  14. Bruynseels, K., de Sio, F. S., & van den Hoven, J. (2018). Digital Twins in health care: Ethical implications of an emerging engineering paradigm. Frontiers in Genetics,9, 1–11. https://doi.org/10.3389/fgene.2018.00031.

    Article  Google Scholar 

  15. Caputo, F., Greco, A., Fera, M., & Macchiaroli, R. (2019). Digital twins to enhance the integration of ergonomics in the workplace design. International Journal of Industrial Ergonomics,71(February), 20–31. https://doi.org/10.1016/j.ergon.2019.02.001.

    Article  Google Scholar 

  16. Casadesus-Masanell, R., & Ricart, J. E. (2010). From strategy to business models and onto tactics. Long Range Planning,43(2–3), 195–215. https://doi.org/10.1016/j.lrp.2010.01.004.

    Article  Google Scholar 

  17. Cavalcante, I. M., Frazzon, E. M., Forcellini, F. A., & Ivanov, D. (2019). A supervised machine learning approach to data-driven simulation of resilient supplier selection in digital manufacturing. International Journal of Information Management,49(February), 86–97. https://doi.org/10.1016/j.ijinfomgt.2019.03.004.

    Article  Google Scholar 

  18. Cheng, Y., Zhang, Y., Ji, P., Xu, W., Zhou, Z., & Tao, F. (2018). Cyber-physical integration for moving digital factories forward towards smart manufacturing: a survey. International Journal of Advanced Manufacturing Technology,97(1–4), 1209–1221. https://doi.org/10.1007/s00170-018-2001-2.

    Article  Google Scholar 

  19. Choi, S., Kang, G., Jun, C., Lee, J. Y., & Han, S. (2017). Cyber-physical systems: A case study of development for manufacturing industry. International Journal of Computer Applications in Technology,55(4), 289. https://doi.org/10.1504/ijcat.2017.10006845.

    Article  Google Scholar 

  20. Cook, D. J., Greengold, N. L., Ellrodt, A. G., & Weingarten, S. R. (1997). The relation between systematic reviews and practice guidelines methods for developing guidelines: An overview. Annals of Internal Medicine,127, 210–216.

    Article  Google Scholar 

  21. Coraddu, A., Oneto, L., Baldi, F., Cipollini, F., Atlar, M., & Savio, S. (2019). Data-driven ship digital twin for estimating the speed loss caused by the marine fouling. Ocean Engineering,186(June), 106063. https://doi.org/10.1016/j.oceaneng.2019.05.045.

    Article  Google Scholar 

  22. Coronado, P. D. U., Lynn, R., Louhichi, W., Parto, M., Wescoat, E., & Kurfess, T. (2018). Part data integration in the shop floor digital twin: Mobile and cloud technologies to enable a manufacturing execution system. Journal of Manufacturing Systems,48, 25–33. https://doi.org/10.1016/j.jmsy.2018.02.002.

    Article  Google Scholar 

  23. Damjanovic-Behrendt, V., & Behrendt, W. (2019). An open source approach to the design and implementation of digital twins for smart manufacturing. International Journal of Computer Integrated Manufacturing,00(00), 1–19. https://doi.org/10.1080/0951192X.2019.1599436.

    Article  Google Scholar 

  24. Dassault Systèmes. (2018). Meet Virtual Singapore, the city’s 3D digital twin. GovInsider, 1–3. https://govinsider.asia/digital-gov/meet-virtual-singapore-citys-3d-digital-twin/. Accessed 22 June 2019.

  25. Datta, S. P. A. (2017). Emergence of digital twins - is this the march of reason? Journal of Innovation Management,5(3), 14–33.

    Article  Google Scholar 

  26. Davis, J., Edgar, T., Porter, J., Bernaden, J., & Sarli, M. (2012). Smart manufacturing, manufacturing intelligence and demand-dynamic performance. Computers & Chemical Engineering,47, 145–156. https://doi.org/10.1016/j.compchemeng.2012.06.037.

    Article  Google Scholar 

  27. Defraeye, T., Tagliavini, G., Wu, W., Prawiranto, K., Schudel, S., Kerisima, M. A., et al. (2019). Digital twins probe into food cooling and biochemical quality changes for reducing losses in refrigerated supply chains. Resources, Conservation and Recycling,149(June), 778–794. https://doi.org/10.1016/j.resconrec.2019.06.002.

    Article  Google Scholar 

  28. Denos, B. R., Sommer, D. E., Favaloro, A. J., Pipes, R. B., & Avery, W. B. (2018). Fiber orientation measurement from mesoscale CT scans of prepreg platelet molded composites. Composites Part A Applied Science and Manufacturing,114(April), 241–249. https://doi.org/10.1016/j.compositesa.2018.08.024.

    Article  Google Scholar 

  29. Dias-Ferreira, J., Ribeiro, L., Akillioglu, H., Neves, P., & Onori, M. (2018). BIOSOARM: A bio-inspired self-organising architecture for manufacturing cyber-physical shopfloors. Journal of Intelligent Manufacturing,29(7), 1659–1682. https://doi.org/10.1007/s10845-016-1258-2.

    Article  Google Scholar 

  30. Ding, K., Chan, F. T. S., Zhang, X., Zhou, G., & Zhang, F. (2019). Defining a digital twin-based cyber-physical production system for autonomous manufacturing in smart shop floors. International Journal of Production Research. https://doi.org/10.1080/00207543.2019.1566661.

    Article  Google Scholar 

  31. Dupláková, D., Flimel, M., Duplák, J., Hatala, M., Radchenko, S., & Botko, F. (2019). Ergonomic rationalization of lighting in the working environment. Part I: Proposal of rationalization algorithm for lighting redesign. International Journal of Industrial Ergonomics,71, 92–102. https://doi.org/10.1016/j.ergon.2019.02.012.

    Article  Google Scholar 

  32. El Saddik, A. (2018). Digital twins: The convergence of multimedia technologies. IEEE Multimedia,25(2), 87–92. https://doi.org/10.1109/MMUL.2018.023121167.

    Article  Google Scholar 

  33. Elhabashy, A. E., Wells, L. J., Camelio, J. A., & Woodall, W. H. (2019). A cyber-physical attack taxonomy for production systems: A quality control perspective. Journal of Intelligent Manufacturing,30(6), 2489–2504. https://doi.org/10.1007/s10845-018-1408-9.

    Article  Google Scholar 

  34. Ewins, D. J. (2016). Exciting vibrations: The role of testing in an era of supercomputers and uncertainties. Meccanica,51(12), 3241–3258. https://doi.org/10.1007/s11012-016-0576-y.

    Article  Google Scholar 

  35. Ferguson, S., Bennett, E., & Ivashchenko, A. (2017). Digital twin tackles design challenges. World Pumps,2017(4), 26–28. https://doi.org/10.1016/s0262-1762(17)30139-6.

    Article  Google Scholar 

  36. Flumerfelt, S. (2017). Transdisciplinary perspectives on complex systems. Berlin: Springer. https://doi.org/10.1007/978-3-319-38756-7.

    Google Scholar 

  37. Fraga-Lamas, P., & Fernández-Caramés, T. M. (2019). A review on blockchain technologies for an advanced and cyber-resilient automotive industry. IEEE Access,7, 17578–17598. https://doi.org/10.1109/ACCESS.2019.2895302.

    Article  Google Scholar 

  38. Freeman, H. (2016). Streaming analytics 101: The what, why, and how. http://www.dataversity.net/streaming-analytics-101/. Accessed 22 June 2019.

  39. Gartner. (2019). Top 10 strategic technology trends for 2019. Gartner, (March 2019), 12. https://www.gartner.com/en/doc/3891569-top-10-strategic-technology-trends-for-2019. Accessed 22 June 2019.

  40. GE. (2016). GE digital twin analytic engine for the digital power plant. https://www.ge.com/digital/sites/default/files/download_assets/Digital-Twin-for-the-digital-power-plant-.pdf. Accessed 22 June 2019.

  41. Ghobakhloo, M. (2018). The future of manufacturing industry: A strategic roadmap toward Industry 4.0. Journal of Manufacturing Technology Management,29(6), 910–936. https://doi.org/10.1108/jmtm-02-2018-0057.

    Article  Google Scholar 

  42. Gilchrist, A. (2016). Industry 4.0: the industrial internet of things. Apress.

  43. Govindan, K., & Soleimani, H. (2017). A review of reverse logistics and closed-loop supply chains: A journal of cleaner production focus. Journal of Cleaner Production,142, 371–384. https://doi.org/10.1016/j.jclepro.2016.03.126.

    Article  Google Scholar 

  44. Grieves, M. (2014). Digital twin: Manufacturing excellence through virtual factory replication. Whitepaper. https://doi.org/10.5281/zenodo.1493930.

    Article  Google Scholar 

  45. Guerra, R. H., Quiza, R., Villalonga, A., Arenas, J., & Castano, F. (2019). Digital twin-based optimization for ultraprecision motion systems with backlash and friction. IEEE Access,7, 93462–93472. https://doi.org/10.1109/access.2019.2928141.

    Article  Google Scholar 

  46. Guo, J., Zhao, N., Sun, L., & Zhang, S. (2018a). Modular based flexible digital twin for factory design. Journal of Ambient Intelligence and Humanized Computing,10(3), 1189–1200. https://doi.org/10.1007/s12652-018-0953-6.

    Article  Google Scholar 

  47. Guo, F., Zou, F., Liu, J., & Wang, Z. (2018b). Working mode in aircraft manufacturing based on digital coordination model. International Journal of Advanced Manufacturing Technology,98(5–8), 1547–1571. https://doi.org/10.1007/s00170-018-2048-0.

    Article  Google Scholar 

  48. Haag, S., & Anderl, R. (2018). Digital twin – proof of concept. Manufacturing Letters,15, 64–66. https://doi.org/10.1016/j.mfglet.2018.02.006.

    Article  Google Scholar 

  49. He, Y., Guo, J., & Zheng, X. (2018). From surveillance to digital twin: Challenges and recent advances of signal processing for industrial internet of things. IEEE Signal Processing Magazine,35(5), 120–129. https://doi.org/10.1109/MSP.2018.2842228.

    Article  Google Scholar 

  50. Helu, M., Joseph, A., & Hedberg, T. (2018). A standards-based approach for linking as-planned to as-fabricated product data. CIRP Annals,67(1), 487–490. https://doi.org/10.1016/j.cirp.2018.04.039.

    Article  Google Scholar 

  51. Iglesias, D., Bunting, P., Esquembri, S., Hollocombe, J., Silburn, S., Vitton-Mea, L., et al. (2017). Digital twin applications for the JET divertor. Fusion Engineering and Design,125(October), 71–76. https://doi.org/10.1016/j.fusengdes.2017.10.012.

    Article  Google Scholar 

  52. I-Scoop. (2017, November 11). Digital twin technology and simulation : Benefits, usage and predictions 2018 (pp. 1–6).

  53. Kannan, K., & Arunachalam, N. (2019). A digital twin for grinding wheel: An information sharing platform for sustainable grinding process. Journal of Manufacturing Science and Engineering,141(2), 021015. https://doi.org/10.1115/1.4042076.

    Article  Google Scholar 

  54. Kim, B. H., Park, J. H., Son, J. Y., Lee, J. Y., Kim, H., Kang, H. S., et al. (2016). Smart manufacturing: Past research, present findings, and future directions. International Journal of Precision Engineering and Manufacturing-Green Technology,3(1), 111–128. https://doi.org/10.1007/s40684-016-0015-5.

    Article  Google Scholar 

  55. Kim, H., Shin, H., Kim, H., & Kim, W.-T. (2018). VR-CPES: A novel cyber-physical education systems for interactive VR services based on a mobile platform. Mobile Information Systems,2018, 1–10. https://doi.org/10.1155/2018/8941241.

    Article  Google Scholar 

  56. Koulamas, C., & Kalogeras, A. (2018). Cyber-physical systems and digital twins in the industrial internet of things. Computer,51(11), 95–98. https://doi.org/10.1109/MC.2018.2876181.

    Article  Google Scholar 

  57. Kucera, R., Aanenson, M., & Benson, M. (2016). The Augmented Digital Twin: Combining physical and virtual data to unlock the value of IoT. White Paper. http://www.iot.gen.tr/wp-content/uploads/2017/04/wp_112_the_augmented_digital_twin_2016-01_reva_digital_final.pdf.

  58. Laaki, H., Miche, Y., & Tammi, K. (2019). Prototyping a digital twin for real time remote control over mobile networks: Application of remote surgery. IEEE Access,7, 1. https://doi.org/10.1109/access.2019.2897018.

    Article  Google Scholar 

  59. Lee, J., Bagheri, B., & Jin, C. (2016). Introduction to cyber manufacturing. Manufacturing Letters,8, 11–15. https://doi.org/10.1016/j.mfglet.2016.05.002.

    Article  Google Scholar 

  60. Lee, J., Bagheri, B., & Kao, H. A. (2015). A cyber-physical systems architecture for Industry 4.0-based manufacturing systems. Manufacturing Letters,3, 18–23. https://doi.org/10.1016/j.mfglet.2014.12.001.

    Article  Google Scholar 

  61. Lee, J. H., Do Noh, S., Kim, H. J., & Kang, Y. S. (2018). Implementation of cyber-physical production systems for quality prediction and operation control in metal casting. Sensors (Switzerland). https://doi.org/10.3390/s18051428.

    Article  Google Scholar 

  62. Leng, J., Jiang, P., Xu, K., Liu, Q., Zhao, J. L., Bian, Y., et al. (2019). Makerchain: A blockchain with chemical signature for self-organizing process in social manufacturing. Journal of Cleaner Production,234, 767–778. https://doi.org/10.1016/j.jclepro.2019.06.265.

    Article  Google Scholar 

  63. Leng, J., Zhang, H., Yan, D., Liu, Q., Chen, X., & Zhang, D. (2018). Digital twin-driven manufacturing cyber-physical system for parallel controlling of smart workshop. Journal of Ambient Intelligence and Humanized Computing,10(3), 1155–1166. https://doi.org/10.1007/s12652-018-0881-5.

    Article  Google Scholar 

  64. Li, C., Mahadevan, S., Ling, Y., Choze, S., & Wang, L. (2017). Dynamic Bayesian network for aircraft wing health monitoring digital twin. AIAA Journal,55(3), 930–941. https://doi.org/10.2514/1.j055201.

    Article  Google Scholar 

  65. Liu, C., Vengayil, H., Lu, Y., & Xu, X. (2019a). A cyber-physical machine tools platform using OPC UA and MTConnect. Journal of Manufacturing Systems,51, 61–74. https://doi.org/10.1016/j.jmsy.2019.04.006.

    Article  Google Scholar 

  66. Liu, C., Vengayil, H., Zhong, R. Y., & Xu, X. (2018a). A systematic development method for cyber-physical machine tools. Journal of Manufacturing Systems,48, 13–24. https://doi.org/10.1016/j.jmsy.2018.02.001.

    Article  Google Scholar 

  67. Liu, L. L., Wan, X., Gao, Z., Li, X., & Feng, B. (2018b). Research on modelling and optimization of hot rolling scheduling. Journal of Ambient Intelligence and Humanized Computing,10(3), 1201–1216. https://doi.org/10.1007/s12652-018-0944-7.

    Article  Google Scholar 

  68. Liu, Q., Zhang, H., Leng, J., & Chen, X. (2018c). Digital twin-driven rapid individualised designing of automated flow-shop manufacturing system. International Journal of Production Research,7543(May), 1–17. https://doi.org/10.1080/00207543.2018.1471243.

    Article  Google Scholar 

  69. Liu, J., Zhou, H., Liu, X., Tian, G., Wu, M. F., Cao, L., et al. (2019b). Dynamic evaluation method of machining process planning based on the digital twin-based process model. IEEE Access,7, 1. https://doi.org/10.1109/access.2019.2893309.

    Article  Google Scholar 

  70. Liu, J., Zhou, H., Tian, G., Liu, X., & Jing, X. (2018d). Digital twin-based process reuse and evaluation approach for smart process planning. International Journal of Advanced Manufacturing Technology, 100(5–8), 1619–1634. https://doi.org/10.1007/s00170-018-2748-5.

    Article  Google Scholar 

  71. Lovas, R., Farkas, A., Marosi, A. C., Ács, S., Kovács, J., Szalóki, Á., & Kádár, B. (2018). Orchestrated platform for cyber-physical systems. Complexity, 2018. https://doi.org/10.1155/2018/8281079.

  72. Love, P. E. D., & Matthews, J. (2019). The ‘how’ of benefits management for digital technology: From engineering to asset management. Automation in Construction,107(August), 102930. https://doi.org/10.1016/j.autcon.2019.102930.

    Article  Google Scholar 

  73. Lu, R., & Brilakis, I. (2019). Digital twinning of existing reinforced concrete bridges from labelled point clusters. Automation in Construction,105(May), 102837. https://doi.org/10.1016/j.autcon.2019.102837.

    Article  Google Scholar 

  74. Lu, Y., Liu, C., Wang, K. I.-K., Huang, H., & Xu, X. (2020). Digital Twin-driven smart manufacturing: Connotation, reference model, applications and research issues. Robotics and Computer-Integrated Manufacturing,61, 101837. https://doi.org/10.1016/j.rcim.2019.101837.

    Article  Google Scholar 

  75. Lu, Y., Min, Q., Liu, Z., & Wang, Y. (2019). An IoT-enabled simulation approach for process planning and analysis: a case from engine re-manufacturing industry. International Journal of Computer Integrated Manufacturing,32(4–5), 413–429. https://doi.org/10.1080/0951192X.2019.1571237.

    Article  Google Scholar 

  76. Lu, Y., & Xu, X. (2018). Resource virtualization: A core technology for developing cyber-physical production systems. Journal of Manufacturing Systems,47(February), 128–140. https://doi.org/10.1016/j.jmsy.2018.05.003.

    Article  Google Scholar 

  77. Lu, Y., & Xu, X. (2019). Cloud-based manufacturing equipment and big data analytics to enable on-demand manufacturing services. Robotics and Computer-Integrated Manufacturing,57, 92–102. https://doi.org/10.1016/j.rcim.2018.11.006.

    Article  Google Scholar 

  78. Luo, W., Hu, T., Zhang, C., & Wei, Y. (2018). Digital twin for CNC machine tool: Modeling and using strategy. Journal of Ambient Intelligence and Humanized Computing,10(3), 1129–1140. https://doi.org/10.1007/s12652-018-0946-5.

    Article  Google Scholar 

  79. Mabkhot, M., Al-Ahmari, A., Salah, B., & Alkhalefah, H. (2018). Requirements of the smart factory system: A survey and perspective. Machines,6(2), 23. https://doi.org/10.3390/machines6020023.

    Article  Google Scholar 

  80. MacDonald, C., Dion, B., & Davoudabadi, M. (2017). Creating a digital twin for a pump. ANSYS Advance, 1, 8–10.

  81. Madni, A., Madni, C., & Lucero, S. (2019). Leveraging digital twin technology in model-based systems engineering. Systems,7(1), 7. https://doi.org/10.3390/systems7010007.

    Article  Google Scholar 

  82. Mishra, D., Roy, R. B., Dutta, S., Pal, S. K., & Chakravarty, D. (2018). A review on sensor based monitoring and control of friction stir welding process and a roadmap to Industry 4.0. Journal of Manufacturing Processes,36, 373–397. https://doi.org/10.1016/j.jmapro.2018.10.016.

    Article  Google Scholar 

  83. Moreno, A., Velez, G., Ardanza, A., Barandiaran, I., de Infante, Á. R., & Chopitea, R. (2017). Virtualisation process of a sheet metal punching machine within the Industry 4.0 vision. International Journal on Interactive Design and Manufacturing,11(2), 365–373. https://doi.org/10.1007/s12008-016-0319-2.

    Article  Google Scholar 

  84. Morgan, J., & O’Donnell, G. E. (2018). Cyber physical process monitoring systems. Journal of Intelligent Manufacturing,29(6), 1317–1328. https://doi.org/10.1007/s10845-015-1180-z.

    Article  Google Scholar 

  85. Morse, E., Dantan, J.-Y., Anwer, N., Söderberg, R., Moroni, G., Qureshi, A. J., et al. (2018). Tolerancing: Managing uncertainty from conceptual design to final product. CIRP Annuals,67(2), 695–717.

    Article  Google Scholar 

  86. Moyne, J., & Iskandar, J. (2017). Big data analytics for smart manufacturing: Case studies in semiconductor manufacturing. Processes,5(4), 39. https://doi.org/10.3390/pr5030039.

    Article  Google Scholar 

  87. Nasir, M. F. M., Rahim, A. R. A., & Hamzah, H. S. (2016). Supply chain management framework development for new multiple life cycle product development. In IEEE international conference on industrial engineering and engineering management, 2016-December (pp. 812–816). https://doi.org/10.1109/ieem.2016.7797989.

  88. Nikolakis, N., Alexopoulos, K., Xanthakis, E., & Chryssolouris, G. (2019). The digital twin implementation for linking the virtual representation of human-based production tasks to their physical counterpart in the factory-floor. International Journal of Computer Integrated Manufacturing,32(1), 1–12. https://doi.org/10.1080/0951192X.2018.1529430.

    Article  Google Scholar 

  89. Omer, M., Margetts, L., Hadi Mosleh, M., Hewitt, S., & Parwaiz, M. (2019). Use of gaming technology to bring bridge inspection to the office. Structure and Infrastructure Engineering,15(10), 1292–1307. https://doi.org/10.1080/15732479.2019.1615962.

    Article  Google Scholar 

  90. Oracle. (2017). Digital twins for IoT applications: A comprehensive approach to implementing IoT digital twins, (January) (pp. 1–9). https://www.oracle.com/assets/digital-twins-for-iot-apps-wp-3491953.pdf. Accessed 22 June 2019.

  91. Oyekan, J. O., Hutabarat, W., Tiwari, A., Grech, R., Aung, M. H., Mariani, M. P., et al. (2018). The effectiveness of virtual environments in developing collaborative strategies between industrial robots and humans. Robotics and Computer-Integrated Manufacturing,55, 41–54. https://doi.org/10.1016/j.rcim.2018.07.006.

    Article  Google Scholar 

  92. Park, K. T., Im, S. J., Kang, Y. S., Noh, S. D., Kang, Y. T., & Yang, S. G. (2019). Service-oriented platform for smart operation of dyeing and finishing industry. International Journal of Computer Integrated Manufacturing,32(3), 307–326. https://doi.org/10.1080/0951192X.2019.1572225.

    Article  Google Scholar 

  93. Petković, T., Puljiz, D., Marković, I., & Hein, B. (2019). Human intention estimation based on hidden Markov model motion validation for safe flexible robotized warehouses. Robotics and Computer-Integrated Manufacturing, 57, 182–196.

    Article  Google Scholar 

  94. Popa, C. L., Cotet, C. E., Popescu, D., Solea, M. F., Şaşcîm, S. G., & Dobrescu, T. (2018). Material flow design and simulation for a glass panel recycling installation. Waste Management and Research,36(7), 653–660. https://doi.org/10.1177/0734242X18775487.

    Article  Google Scholar 

  95. Posada, J., Toro, C., Barandiaran, I., Oyarzun, D., Stricker, D., De Amicis, R., et al. (2015). Visual computing as a key enabling technology for industrie 4.0 and industrial internet. IEEE Computer Graphics and Applications,35(2), 26–40. https://doi.org/10.1109/mcg.2015.45.

    Article  Google Scholar 

  96. Qi, Q., & Tao, F. (2018). Digital twin and big data towards smart manufacturing and Industry 4.0: 360 degree comparison. IEEE Access,6, 3585–3593. https://doi.org/10.1109/ACCESS.2018.2793265.

    Article  Google Scholar 

  97. Raman, V., & Hassanaly, M. (2019). Emerging trends in numerical simulations of combustion systems. Proceedings of the Combustion Institute,37(2), 2073–2089. https://doi.org/10.1016/j.proci.2018.07.121.

    Article  Google Scholar 

  98. Reim, W., Parida, V., & Örtqvist, D. (2015). Product-service systems (PSS) business models and tactics - a systematic literature review. Journal of Cleaner Production,97, 61–75. https://doi.org/10.1016/j.jclepro.2014.07.003.

    Article  Google Scholar 

  99. Research, G. V. (2018). Digital twin market size, share & trends analysis report by end use. Market Research Report.

  100. Rodič, B. (2017). Industry 4.0 and the new simulation modelling paradigm. Organizacija,50(3), 193–207. https://doi.org/10.1515/orga-2017-0017.

    Article  Google Scholar 

  101. Rojko, A. (2017). Industry 4.0 concept: Background and overview. International Journal of Interactive Mobile Technologies (iJIM),11(5), 77–90.

    Article  Google Scholar 

  102. Schleich, B., Anwer, N., Mathieu, L., & Wartzack, S. (2017). Shaping the digital twin for design and production engineering. CIRP Annals - Manufacturing Technology,66(1), 141–144. https://doi.org/10.1016/j.cirp.2017.04.040.

    Article  Google Scholar 

  103. Schluse, M., Priggemeyer, M., Atorf, L., & Rossmann, J. (2018). Experimentable digital twins-streamlining simulation-based systems engineering for industry 40. IEEE Transactions on Industrial Informatics,14(4), 1722–1731. https://doi.org/10.1109/TII.2018.2804917.

    Article  Google Scholar 

  104. Schneider, G. F., Wicaksono, H., & Ovtcharova, J. (2019). Virtual engineering of cyber-physical automation systems: The case of control logic. Advanced Engineering Informatics,39, 127–143. https://doi.org/10.1016/j.aei.2018.11.009.

    Article  Google Scholar 

  105. Senthilnathan, K., & Annapoorani, I. (2018). Multi-port current source inverter for smart microgrid applications: A cyber physical paradigm. Electronics,8(1), 1. https://doi.org/10.3390/electronics8010001.

    Article  Google Scholar 

  106. Seuring, S., & Müller, M. (2008). From a literature review to a conceptual framework for sustainable supply chain management. Journal of Cleaner Production,16(15), 1699–1710. https://doi.org/10.1016/j.jclepro.2008.04.020.

    Article  Google Scholar 

  107. Sharif Ullah, A. M. M. (2019). Modeling and simulation of complex manufacturing phenomena using sensor signals from the perspective of Industry 4.0. Advanced Engineering Informatics,39, 1–13. https://doi.org/10.1016/j.aei.2018.11.003.

    Article  Google Scholar 

  108. Sierla, S., Kyrki, V., Aarnio, P., & Vyatkin, V. (2018). Automatic assembly planning based on digital product descriptions. Computers in Industry,97, 34–46. https://doi.org/10.1016/j.compind.2018.01.013.

    Article  Google Scholar 

  109. Söderberg, R., Wärmefjord, K., Carlson, J. S., & Lindkvist, L. (2017). Toward a digital twin for real-time geometry assurance in individualized production. CIRP Annals - Manufacturing Technology,66(1), 137–140. https://doi.org/10.1016/j.cirp.2017.04.038.

    Article  Google Scholar 

  110. Söderberg, R., Wärmefjord, K., Madrid, J., Lorin, S., Forslund, A., & Lindkvist, L. (2018). An information and simulation framework for increased quality in welded components. CIRP Annals,67(1), 165–168. https://doi.org/10.1016/j.cirp.2018.04.118.

    Article  Google Scholar 

  111. Stark, J. (2016). Product lifecycle management (Vol. 1). Berlin: Springer. https://doi.org/10.1007/978-3-319-24436-5.

    Google Scholar 

  112. Stark, R., Kind, S., & Neumeyer, S. (2017). Innovations in digital modelling for next generation manufacturing system design. CIRP Annals - Manufacturing Technology,66(1), 169–172. https://doi.org/10.1016/j.cirp.2017.04.045.

    Article  Google Scholar 

  113. Sun, X., Bao, J., Li, J., Zhang, Y., Liu, S., & Zhou, B. (2020). A digital twin-driven approach for the assembly-commissioning of high precision products. Robotics and Computer-Integrated Manufacturing,61, 1–14. https://doi.org/10.1016/j.rcim.2019.101839.

    Article  Google Scholar 

  114. Tabar, R. S., Wärmefjord, K., & Söderberg, R. (2019). A method for identification and sequence optimisation of geometry spot welds in a digital twin context. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science,233(16), 5610–5621. https://doi.org/10.1177/0954406219854466.

    Article  Google Scholar 

  115. Tan, Y., Yang, W., Yoshida, K., & Takakuwa, S. (2019). Application of IoT-aided simulation to manufacturing systems in cyber-physical system. Machines,7(1), 2. https://doi.org/10.3390/machines7010002.

    Article  Google Scholar 

  116. Tao, F., Cheng, J., & Qi, Q. (2018a). IIHub: An industrial internet-of-things hub toward smart manufacturing based on cyber-physical system. IEEE Transactions on Industrial Informatics,14(5), 2271–2280. https://doi.org/10.1109/TII.2017.2759178.

    Article  Google Scholar 

  117. Tao, F., Cheng, J., Qi, Q., Zhang, M., Zhang, H., & Sui, F. (2018b). Digital twin-driven product design, manufacturing and service with big data. International Journal of Advanced Manufacturing Technology,94(9–12), 3563–3576. https://doi.org/10.1007/s00170-017-0233-1.

    Article  Google Scholar 

  118. Tao, F., & Qi, Q. (2019). New IT driven service-oriented smart manufacturing: Framework and characteristics. IEEE Transactions on Systems, Man, and Cybernetics: Systems,49(1), 81–91. https://doi.org/10.1109/TSMC.2017.2723764.

    Article  Google Scholar 

  119. Tao, F., Qi, Q., Liu, A., & Kusiak, A. (2018c). Data-driven smart manufacturing. Journal of Manufacturing Systems,48, 157–169. https://doi.org/10.1016/j.jmsy.2018.01.006.

    Article  Google Scholar 

  120. Tao, F., Qi, Q., Wang, L., & Nee, A. Y. C. (2019). Digital twins and cyber-physical systems toward smart manufacturing and Industry 4.0: Correlation and comparison. Engineering,5(4), 653–661. https://doi.org/10.1016/j.eng.2019.01.014.

    Article  Google Scholar 

  121. Tao, F., Sui, F., Liu, A., Qi, Q., Zhang, M., Song, B., et al. (2018d). Digital twin-driven product design framework. International Journal of Production Research,7543, 1–19. https://doi.org/10.1080/00207543.2018.1443229.

    Article  Google Scholar 

  122. Tao, F., & Zhang, M. (2017). Digital twin shop–floor: A new shop–floor paradigm towards smart manufacturing. IEEE Access,5, 20418–20427. https://doi.org/10.1109/ACCESS.2017.2756069.

    Article  Google Scholar 

  123. Tao, F., Zhang, H., Liu, A., & Nee, A. Y. C. (2018e). Digital twin in industry: State-of-the-art. IEEE Transactions on Industrial Informatics,15(4), 2405–2415. https://doi.org/10.1109/TII.2018.2873186.

    Article  Google Scholar 

  124. Tao, F., Zhang, M., Liu, Y., & Nee, A. Y. C. (2018f). Digital twin driven prognostics and health management for complex equipment. CIRP Annals,67(1), 169–172. https://doi.org/10.1016/j.cirp.2018.04.055.

    Article  Google Scholar 

  125. Taylor, S. J. E. (2019). Distributed simulation: State-of-the-art and potential for operational research. European Journal of Operational Research,273(1), 1–19. https://doi.org/10.1016/j.ejor.2018.04.032.

    Article  Google Scholar 

  126. Thönes, J. (2015). Microservices. IEEE Software, 32(1), 116.

    Article  Google Scholar 

  127. Uhlemann, T. H. J., Schock, C., Lehmann, C., Freiberger, S., & Steinhilper, R. (2017). The digital twin: Demonstrating the potential of real time data acquisition in production systems. Procedia Manufacturing,9, 113–120. https://doi.org/10.1016/j.promfg.2017.04.043.

    Article  Google Scholar 

  128. Wang, H. K., Haynes, R., Huang, H. Z., Dong, L., & Atluri, S. N. (2015). The use of high-performance fatigue mechanics and the extended Kalman/particle filters, for diagnostics and prognostics of aircraft structures. CMES - Computer Modeling in Engineering and Sciences,105(1), 1–24.

    Google Scholar 

  129. Wang, X. V., & Wang, L. (2019). Digital twin-based WEEE recycling, recovery and remanufacturing in the background of Industry 4.0. International Journal of Production Research,57(12), 3892–3902. https://doi.org/10.1080/00207543.2018.1497819.

    Article  Google Scholar 

  130. Wang, J., Ye, L., Gao, R. X., Li, C., & Zhang, L. (2019). Digital Twin for rotating machinery fault diagnosis in smart manufacturing. International Journal of Production Research,57(12), 3920–3934. https://doi.org/10.1080/00207543.2018.1552032.

    Article  Google Scholar 

  131. Wang, W., Zhang, Y., & Zhong, R. Y. (2020). A proactive material handling method for CPS enabled shop–floor. Robotics and Computer-Integrated Manufacturing,61, 101849. https://doi.org/10.1016/j.rcim.2019.101849.

    Article  Google Scholar 

  132. Wirtz, B. W., Pistoia, A., Ullrich, S., & Göttel, V. (2016). Business models: Origin, development and future research perspectives. Long Range Planning,49(1), 36–54. https://doi.org/10.1016/j.lrp.2015.04.001.

    Article  Google Scholar 

  133. Xia, T., & Xi, L. (2019). Manufacturing paradigm-oriented PHM methodologies for cyber-physical systems. Journal of Intelligent Manufacturing,30(4), 1659–1672. https://doi.org/10.1007/s10845-017-1342-2.

    Article  Google Scholar 

  134. Xie, J., Wang, X., Yang, Z., & Hao, S. (2019). Virtual monitoring method for hydraulic supports based on digital twin theory. Mining Technology: Transactions of the Institute of Mining and Metallurgy,128(2), 77–87. https://doi.org/10.1080/25726668.2019.1569367.

    Article  Google Scholar 

  135. Xu, X. (2017). Machine tool 4.0 for the new era of manufacturing. International Journal of Advanced Manufacturing Technology,92(5–8), 1893–1900. https://doi.org/10.1007/s00170-017-0300-7.

    Article  Google Scholar 

  136. Xu, Y., Sun, Y., Liu, X., & Zheng, Y. (2019). A digital-twin-assisted fault diagnosis using deep transfer learning. IEEE Access,7, 1. https://doi.org/10.1109/access.2018.2890566.

    Article  Google Scholar 

  137. Zhang, H., Liu, Q., Chen, X., Zhang, D., & Leng, J. (2017). A digital twin-based approach for designing and multi-objective optimization of hollow glass production line. IEEE Access,5, 26901–26911. https://doi.org/10.1109/ACCESS.2017.2766453.

    Article  Google Scholar 

  138. Zhang, Z., Wang, X., Wang, X., Cui, F., & Cheng, H. (2019). A simulation-based approach for plant layout design and production planning. Journal of Ambient Intelligence and Humanized Computing,10(3), 1217–1230. https://doi.org/10.1007/s12652-018-0687-5.

    Article  Google Scholar 

  139. Zhang, H., Zhang, G., & Yan, Q. (2018). Digital twin-driven cyber-physical production system towards smart shop–floor. Journal of Ambient Intelligence and Humanized Computing. https://doi.org/10.1007/s12652-018-1125-4.

    Article  Google Scholar 

  140. Zhao, R., Yan, D., Liu, Q., Leng, J., Wan, J., Chen, X., et al. (2019). Digital twin-driven cyber-physical system for autonomously controlling of micro punching system. IEEE Access,7, 9459–9469. https://doi.org/10.1109/ACCESS.2019.2891060.

    Article  Google Scholar 

  141. Zheng, P., Lin, T.-J., Chen, C.-H., & Xu, X. (2018a). A systematic design approach for service innovation of smart product-service systems. Journal of Cleaner Production,201, 657–667. https://doi.org/10.1016/j.jclepro.2018.08.101.

    Article  Google Scholar 

  142. Zheng, P., Sang, Z., Zhong, R. Y., Liu, Y., Liu, C., & Mubarok, K, et al. (2018d). Smart manufacturing systems for Industry 4.0: Conceptual framework, scenarios, and future perspectives. Frontiers of Mechanical Engineering, 13(2), 137–150.

    Article  Google Scholar 

  143. Zheng, P., Xu, X., & Chen, C. H. (2018b). A data-driven cyber-physical approach for personalised smart, connected product co-development in a cloud-based environment. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-018-1430-y.

    Article  Google Scholar 

  144. Zheng, Y., Yang, S., & Cheng, H. (2018c). An application framework of digital twin and its case study. Journal of Ambient Intelligence and Humanized Computing,10(3), 1–13. https://doi.org/10.1007/s12652-018-0911-3.

    Article  Google Scholar 

  145. Zhuang, C., Liu, J., & Xiong, H. (2018). Digital twin-based smart production management and control framework for the complex product assembly shop–floor. International Journal of Advanced Manufacturing Technology,96(1–4), 1149–1163. https://doi.org/10.1007/s00170-018-1617-6.

    Article  Google Scholar 

  146. Zobel-Roos, S., Schmidt, A., Mestmäcker, F., Mouellef, M., Huter, M., Uhlenbrock, L., et al. (2019). Accelerating biologics manufacturing by modeling or: Is approval under the QbD and PAT approaches demanded by authorities acceptable without a digital-twin? Processes,7(2), 94. https://doi.org/10.3390/pr7020094.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support of the Start-up Fund for New Recruits (1-BE2X, Project ID: P0031040) from the Hong Kong Polytechnic University, Hong Kong, and the National Research Foundation (NRF) Singapore under the Corporate Laboratory @ University Scheme (Ref. RCA-16/434; SCORP1) at Nanyang Technological University, Singapore.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pai Zheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lim, K.Y.H., Zheng, P. & Chen, CH. A state-of-the-art survey of Digital Twin: techniques, engineering product lifecycle management and business innovation perspectives. J Intell Manuf 31, 1313–1337 (2020). https://doi.org/10.1007/s10845-019-01512-w

Download citation

Keywords

  • Digital Twin
  • Cyber-physical system
  • Business model
  • Product lifecycle management
  • Review