Advertisement

A state-of-the-art survey of Digital Twin: techniques, engineering product lifecycle management and business innovation perspectives

  • Kendrik Yan Hong Lim
  • Pai ZhengEmail author
  • Chun-Hsien Chen
Article
  • 181 Downloads

Abstract

With the rapid advancement of cyber-physical systems, Digital Twin (DT) is gaining ever-increasing attention owing to its great capabilities to realize Industry 4.0. Enterprises from different fields are taking advantage of its ability to simulate real-time working conditions and perform intelligent decision-making, where a cost-effective solution can be readily delivered to meet individual stakeholder demands. As a hot topic, many approaches have been designed and implemented to date. However, most approaches today lack a comprehensive review to examine DT benefits by considering both engineering product lifecycle management and business innovation as a whole. To fill this gap, this work conducts a state-of-the art survey of DT by selecting 123 representative items together with 22 supplementary works to address those two perspectives, while considering technical aspects as a fundamental. The systematic review further identifies eight future perspectives for DT, including modular DT, modeling consistency and accuracy, incorporation of Big Data analytics in DT models, DT simulation improvements, VR integration into DT, expansion of DT domains, efficient mapping of cyber-physical data and cloud/edge computing integration. This work sets out to be a guide to the status of DT development and application in today’s academic and industrial environment.

Keywords

Digital Twin Cyber-physical system Business model Product lifecycle management Review 

Abbreviations

AMQP

Advanced message queuing protocol

BMs

Business models

CoAP

Constrained application protocol

CPS

Cyber physical systems

DMFEA

Design failure mode and effects analysis

DT

Digital Twin

ERP

Enterprise resource planning

FEM

Finite element method

LabVIEW

Laboratory virtual instrument engineering workbench

MES

Manufacturing execution system

MQTT

Message queuing telemetry transport

NTP

Network time protocol

OMPL

Open motion planning library

OPC UA

Open platform communication unified architecture

OSI

Open systems interconnection

PHM

Prognostics and health management

PLC

Programmable logic controller

PLM

Product lifecycle management

PTP

Precision time protocol

RAMI 4.0

Reference architecture model Industry 4.0

SCADA

Supervisory control and data acquisition

SHDR

Simple hierarchical data representation

SOAP

Simple object access protocol

STEP

Standard for exchange of product model data

TCP/IP

Transmission control protocol/ internet protocol

UDP

User datagram protocol

VV&A

Verification validation and accreditation

WirelessHART

Wireless highway addressable remote transducer protocol

Notes

Acknowledgements

The authors would like to acknowledge the financial support of the Start-up Fund for New Recruits (1-BE2X, Project ID: P0031040) from the Hong Kong Polytechnic University, Hong Kong, and the National Research Foundation (NRF) Singapore under the Corporate Laboratory @ University Scheme (Ref. RCA-16/434; SCORP1) at Nanyang Technological University, Singapore.

References

  1. Abramovici, M., Göbel, J. C., & Dang, H. B. (2016). Semantic data management for the development and continuous reconfiguration of smart products and systems. CIRP Annals - Manufacturing Technology,65(1), 185–188.  https://doi.org/10.1016/j.cirp.2016.04.051.CrossRefGoogle Scholar
  2. Adrodegari, F., Saccani, N., Kowalkowski, C., & Vilo, J. (2017). PSS business model conceptualization and application. Production Planning and Control,28(15), 1251–1263.  https://doi.org/10.1080/09537287.2017.1363924.CrossRefGoogle Scholar
  3. Alam, K. M., & El Saddik, A. (2017). C2PS: A digital twin architecture reference model for the cloud-based cyber-physical systems. IEEE Access,5, 2050–2062.  https://doi.org/10.1109/ACCESS.2017.2657006.CrossRefGoogle Scholar
  4. Angrish, A., Starly, B., Lee, Y. S., & Cohen, P. H. (2017). A flexible data schema and system architecture for the virtualization of manufacturing machines (VMM). Journal of Manufacturing Systems,45, 236–247.  https://doi.org/10.1016/j.jmsy.2017.10.003.CrossRefGoogle Scholar
  5. Arafsha, F., Laamarti, F., & El Saddik, A. (2019). Cyber-physical system framework for measurement and analysis of physical activities. Electronics,8(2), 248.  https://doi.org/10.3390/electronics8020248.CrossRefGoogle Scholar
  6. Ardanza, A., Moreno, A., Segura, Á., de la Cruz, M., & Aguinaga, D. (2019). Sustainable and flexible industrial human machine interfaces to support adaptable applications in the Industry 4.0 paradigm. International Journal of Production Research,57(12), 4045–4059.  https://doi.org/10.1080/00207543.2019.1572932.CrossRefGoogle Scholar
  7. Baden-Fuller, C., & Morgan, M. S. (2010). Business models as models. Long Range Planning,43(2–3), 156–171.  https://doi.org/10.1016/j.lrp.2010.02.005.CrossRefGoogle Scholar
  8. Bao, J., Guo, D., Li, J., & Zhang, J. (2018). The modelling and operations for the digital twin in the context of manufacturing. Enterprise Information Systems,13(4), 534–556.  https://doi.org/10.1080/17517575.2018.1526324.CrossRefGoogle Scholar
  9. Baruffaldi, G., Accorsi, R., Manzini, R., & Baruffaldi, G. (2019). Warehouse management system customization and information availability in 3pl companies: A decision-support tool. Industrial Management & Data Syatems.  https://doi.org/10.1108/imds-01-2018-0033.CrossRefGoogle Scholar
  10. Biancolini, M. E., & Cella, U. (2018). Radial basis functions update of digital models on actual manufactured shapes. Journal of Computational and Nonlinear Dynamics,14(2), 021013.  https://doi.org/10.1115/1.4041680.CrossRefGoogle Scholar
  11. Bilberg, A., & Malik, A. A. (2019). Digital twin driven human–robot collaborative assembly. CIRP Annals,68(1), 499–502.  https://doi.org/10.1016/j.cirp.2019.04.011.CrossRefGoogle Scholar
  12. Bolton, R. N., McColl-Kennedy, J. R., Cheung, L., Gallan, A., Orsingher, C., Witell, L., et al. (2018). Customer experience challenges: Bringing together digital, physical and social realms. Journal of Service Management.  https://doi.org/10.1108/josm-04-2018-0113.CrossRefGoogle Scholar
  13. Bottani, E., Cammardella, A., Murino, T., & Vespoli, S. (2017). From the cyber-physical system to the digital twin: the process development for behaviour modelling of a cyber guided vehicle in M2M logic. XXII Summer School Francesco TurcoIndustrial Systems Engineering, 1–7.Google Scholar
  14. Bruynseels, K., de Sio, F. S., & van den Hoven, J. (2018). Digital Twins in health care: Ethical implications of an emerging engineering paradigm. Frontiers in Genetics,9, 1–11.  https://doi.org/10.3389/fgene.2018.00031.CrossRefGoogle Scholar
  15. Caputo, F., Greco, A., Fera, M., & Macchiaroli, R. (2019). Digital twins to enhance the integration of ergonomics in the workplace design. International Journal of Industrial Ergonomics,71(February), 20–31.  https://doi.org/10.1016/j.ergon.2019.02.001.CrossRefGoogle Scholar
  16. Casadesus-Masanell, R., & Ricart, J. E. (2010). From strategy to business models and onto tactics. Long Range Planning,43(2–3), 195–215.  https://doi.org/10.1016/j.lrp.2010.01.004.CrossRefGoogle Scholar
  17. Cavalcante, I. M., Frazzon, E. M., Forcellini, F. A., & Ivanov, D. (2019). A supervised machine learning approach to data-driven simulation of resilient supplier selection in digital manufacturing. International Journal of Information Management,49(February), 86–97.  https://doi.org/10.1016/j.ijinfomgt.2019.03.004.CrossRefGoogle Scholar
  18. Cheng, Y., Zhang, Y., Ji, P., Xu, W., Zhou, Z., & Tao, F. (2018). Cyber-physical integration for moving digital factories forward towards smart manufacturing: a survey. International Journal of Advanced Manufacturing Technology,97(1–4), 1209–1221.  https://doi.org/10.1007/s00170-018-2001-2.CrossRefGoogle Scholar
  19. Choi, S., Kang, G., Jun, C., Lee, J. Y., & Han, S. (2017). Cyber-physical systems: A case study of development for manufacturing industry. International Journal of Computer Applications in Technology,55(4), 289.  https://doi.org/10.1504/ijcat.2017.10006845.CrossRefGoogle Scholar
  20. Cook, D. J., Greengold, N. L., Ellrodt, A. G., & Weingarten, S. R. (1997). The relation between systematic reviews and practice guidelines methods for developing guidelines: An overview. Annals of Internal Medicine,127, 210–216.CrossRefGoogle Scholar
  21. Coraddu, A., Oneto, L., Baldi, F., Cipollini, F., Atlar, M., & Savio, S. (2019). Data-driven ship digital twin for estimating the speed loss caused by the marine fouling. Ocean Engineering,186(June), 106063.  https://doi.org/10.1016/j.oceaneng.2019.05.045.CrossRefGoogle Scholar
  22. Coronado, P. D. U., Lynn, R., Louhichi, W., Parto, M., Wescoat, E., & Kurfess, T. (2018). Part data integration in the shop floor digital twin: Mobile and cloud technologies to enable a manufacturing execution system. Journal of Manufacturing Systems,48, 25–33.  https://doi.org/10.1016/j.jmsy.2018.02.002.CrossRefGoogle Scholar
  23. Damjanovic-Behrendt, V., & Behrendt, W. (2019). An open source approach to the design and implementation of digital twins for smart manufacturing. International Journal of Computer Integrated Manufacturing,00(00), 1–19.  https://doi.org/10.1080/0951192X.2019.1599436.CrossRefGoogle Scholar
  24. Dassault Systèmes. (2018). Meet Virtual Singapore, the city’s 3D digital twin. GovInsider, 1–3. https://govinsider.asia/digital-gov/meet-virtual-singapore-citys-3d-digital-twin/. Accessed 22 June 2019.
  25. Datta, S. P. A. (2017). Emergence of digital twins - is this the march of reason? Journal of Innovation Management,5(3), 14–33.CrossRefGoogle Scholar
  26. Davis, J., Edgar, T., Porter, J., Bernaden, J., & Sarli, M. (2012). Smart manufacturing, manufacturing intelligence and demand-dynamic performance. Computers & Chemical Engineering,47, 145–156.  https://doi.org/10.1016/j.compchemeng.2012.06.037.CrossRefGoogle Scholar
  27. Defraeye, T., Tagliavini, G., Wu, W., Prawiranto, K., Schudel, S., Kerisima, M. A., et al. (2019). Digital twins probe into food cooling and biochemical quality changes for reducing losses in refrigerated supply chains. Resources, Conservation and Recycling,149(June), 778–794.  https://doi.org/10.1016/j.resconrec.2019.06.002.CrossRefGoogle Scholar
  28. Denos, B. R., Sommer, D. E., Favaloro, A. J., Pipes, R. B., & Avery, W. B. (2018). Fiber orientation measurement from mesoscale CT scans of prepreg platelet molded composites. Composites Part A Applied Science and Manufacturing,114(April), 241–249.  https://doi.org/10.1016/j.compositesa.2018.08.024.CrossRefGoogle Scholar
  29. Dias-Ferreira, J., Ribeiro, L., Akillioglu, H., Neves, P., & Onori, M. (2018). BIOSOARM: A bio-inspired self-organising architecture for manufacturing cyber-physical shopfloors. Journal of Intelligent Manufacturing,29(7), 1659–1682.  https://doi.org/10.1007/s10845-016-1258-2.CrossRefGoogle Scholar
  30. Ding, K., Chan, F. T. S., Zhang, X., Zhou, G., & Zhang, F. (2019). Defining a digital twin-based cyber-physical production system for autonomous manufacturing in smart shop floors. International Journal of Production Research.  https://doi.org/10.1080/00207543.2019.1566661.CrossRefGoogle Scholar
  31. Dupláková, D., Flimel, M., Duplák, J., Hatala, M., Radchenko, S., & Botko, F. (2019). Ergonomic rationalization of lighting in the working environment. Part I: Proposal of rationalization algorithm for lighting redesign. International Journal of Industrial Ergonomics,71, 92–102.  https://doi.org/10.1016/j.ergon.2019.02.012.CrossRefGoogle Scholar
  32. El Saddik, A. (2018). Digital twins: The convergence of multimedia technologies. IEEE Multimedia,25(2), 87–92.  https://doi.org/10.1109/MMUL.2018.023121167.CrossRefGoogle Scholar
  33. Elhabashy, A. E., Wells, L. J., Camelio, J. A., & Woodall, W. H. (2019). A cyber-physical attack taxonomy for production systems: A quality control perspective. Journal of Intelligent Manufacturing,30(6), 2489–2504.  https://doi.org/10.1007/s10845-018-1408-9.CrossRefGoogle Scholar
  34. Ewins, D. J. (2016). Exciting vibrations: The role of testing in an era of supercomputers and uncertainties. Meccanica,51(12), 3241–3258.  https://doi.org/10.1007/s11012-016-0576-y.CrossRefGoogle Scholar
  35. Ferguson, S., Bennett, E., & Ivashchenko, A. (2017). Digital twin tackles design challenges. World Pumps,2017(4), 26–28.  https://doi.org/10.1016/s0262-1762(17)30139-6.CrossRefGoogle Scholar
  36. Flumerfelt, S. (2017). Transdisciplinary perspectives on complex systems. Berlin: Springer.  https://doi.org/10.1007/978-3-319-38756-7.CrossRefGoogle Scholar
  37. Fraga-Lamas, P., & Fernández-Caramés, T. M. (2019). A review on blockchain technologies for an advanced and cyber-resilient automotive industry. IEEE Access,7, 17578–17598.  https://doi.org/10.1109/ACCESS.2019.2895302.CrossRefGoogle Scholar
  38. Freeman, H. (2016). Streaming analytics 101: The what, why, and how. http://www.dataversity.net/streaming-analytics-101/. Accessed 22 June 2019.
  39. Gartner. (2019). Top 10 strategic technology trends for 2019. Gartner, (March 2019), 12. https://www.gartner.com/en/doc/3891569-top-10-strategic-technology-trends-for-2019. Accessed 22 June 2019.
  40. GE. (2016). GE digital twin analytic engine for the digital power plant. https://www.ge.com/digital/sites/default/files/download_assets/Digital-Twin-for-the-digital-power-plant-.pdf. Accessed 22 June 2019.
  41. Ghobakhloo, M. (2018). The future of manufacturing industry: A strategic roadmap toward Industry 4.0. Journal of Manufacturing Technology Management,29(6), 910–936.  https://doi.org/10.1108/jmtm-02-2018-0057.CrossRefGoogle Scholar
  42. Gilchrist, A. (2016). Industry 4.0: the industrial internet of things. Apress.Google Scholar
  43. Govindan, K., & Soleimani, H. (2017). A review of reverse logistics and closed-loop supply chains: A journal of cleaner production focus. Journal of Cleaner Production,142, 371–384.  https://doi.org/10.1016/j.jclepro.2016.03.126.CrossRefGoogle Scholar
  44. Grieves, M. (2014). Digital twin: Manufacturing excellence through virtual factory replication. Whitepaper.  https://doi.org/10.5281/zenodo.1493930.CrossRefGoogle Scholar
  45. Guerra, R. H., Quiza, R., Villalonga, A., Arenas, J., & Castano, F. (2019). Digital twin-based optimization for ultraprecision motion systems with backlash and friction. IEEE Access,7, 93462–93472.  https://doi.org/10.1109/access.2019.2928141.CrossRefGoogle Scholar
  46. Guo, J., Zhao, N., Sun, L., & Zhang, S. (2018a). Modular based flexible digital twin for factory design. Journal of Ambient Intelligence and Humanized Computing,10(3), 1189–1200.  https://doi.org/10.1007/s12652-018-0953-6.CrossRefGoogle Scholar
  47. Guo, F., Zou, F., Liu, J., & Wang, Z. (2018b). Working mode in aircraft manufacturing based on digital coordination model. International Journal of Advanced Manufacturing Technology,98(5–8), 1547–1571.  https://doi.org/10.1007/s00170-018-2048-0.CrossRefGoogle Scholar
  48. Haag, S., & Anderl, R. (2018). Digital twin – proof of concept. Manufacturing Letters,15, 64–66.  https://doi.org/10.1016/j.mfglet.2018.02.006.CrossRefGoogle Scholar
  49. He, Y., Guo, J., & Zheng, X. (2018). From surveillance to digital twin: Challenges and recent advances of signal processing for industrial internet of things. IEEE Signal Processing Magazine,35(5), 120–129.  https://doi.org/10.1109/MSP.2018.2842228.CrossRefGoogle Scholar
  50. Helu, M., Joseph, A., & Hedberg, T. (2018). A standards-based approach for linking as-planned to as-fabricated product data. CIRP Annals,67(1), 487–490.  https://doi.org/10.1016/j.cirp.2018.04.039.CrossRefGoogle Scholar
  51. Iglesias, D., Bunting, P., Esquembri, S., Hollocombe, J., Silburn, S., Vitton-Mea, L., et al. (2017). Digital twin applications for the JET divertor. Fusion Engineering and Design,125(October), 71–76.  https://doi.org/10.1016/j.fusengdes.2017.10.012.CrossRefGoogle Scholar
  52. I-Scoop. (2017, November 11). Digital twin technology and simulation : Benefits, usage and predictions 2018 (pp. 1–6).Google Scholar
  53. Kannan, K., & Arunachalam, N. (2019). A digital twin for grinding wheel: An information sharing platform for sustainable grinding process. Journal of Manufacturing Science and Engineering,141(2), 021015.  https://doi.org/10.1115/1.4042076.CrossRefGoogle Scholar
  54. Kim, B. H., Park, J. H., Son, J. Y., Lee, J. Y., Kim, H., Kang, H. S., et al. (2016). Smart manufacturing: Past research, present findings, and future directions. International Journal of Precision Engineering and Manufacturing-Green Technology,3(1), 111–128.  https://doi.org/10.1007/s40684-016-0015-5.CrossRefGoogle Scholar
  55. Kim, H., Shin, H., Kim, H., & Kim, W.-T. (2018). VR-CPES: A novel cyber-physical education systems for interactive VR services based on a mobile platform. Mobile Information Systems,2018, 1–10.  https://doi.org/10.1155/2018/8941241.CrossRefGoogle Scholar
  56. Koulamas, C., & Kalogeras, A. (2018). Cyber-physical systems and digital twins in the industrial internet of things. Computer,51(11), 95–98.  https://doi.org/10.1109/MC.2018.2876181.CrossRefGoogle Scholar
  57. Kucera, R., Aanenson, M., & Benson, M. (2016). The Augmented Digital Twin: Combining physical and virtual data to unlock the value of IoT. White Paper. http://www.iot.gen.tr/wp-content/uploads/2017/04/wp_112_the_augmented_digital_twin_2016-01_reva_digital_final.pdf.
  58. Laaki, H., Miche, Y., & Tammi, K. (2019). Prototyping a digital twin for real time remote control over mobile networks: Application of remote surgery. IEEE Access,7, 1.  https://doi.org/10.1109/access.2019.2897018.CrossRefGoogle Scholar
  59. Lee, J., Bagheri, B., & Jin, C. (2016). Introduction to cyber manufacturing. Manufacturing Letters,8, 11–15.  https://doi.org/10.1016/j.mfglet.2016.05.002.CrossRefGoogle Scholar
  60. Lee, J., Bagheri, B., & Kao, H. A. (2015). A cyber-physical systems architecture for Industry 4.0-based manufacturing systems. Manufacturing Letters,3, 18–23.  https://doi.org/10.1016/j.mfglet.2014.12.001.CrossRefGoogle Scholar
  61. Lee, J. H., Do Noh, S., Kim, H. J., & Kang, Y. S. (2018). Implementation of cyber-physical production systems for quality prediction and operation control in metal casting. Sensors (Switzerland).  https://doi.org/10.3390/s18051428.CrossRefGoogle Scholar
  62. Leng, J., Jiang, P., Xu, K., Liu, Q., Zhao, J. L., Bian, Y., et al. (2019). Makerchain: A blockchain with chemical signature for self-organizing process in social manufacturing. Journal of Cleaner Production,234, 767–778.  https://doi.org/10.1016/j.jclepro.2019.06.265.CrossRefGoogle Scholar
  63. Leng, J., Zhang, H., Yan, D., Liu, Q., Chen, X., & Zhang, D. (2018). Digital twin-driven manufacturing cyber-physical system for parallel controlling of smart workshop. Journal of Ambient Intelligence and Humanized Computing,10(3), 1155–1166.  https://doi.org/10.1007/s12652-018-0881-5.CrossRefGoogle Scholar
  64. Li, C., Mahadevan, S., Ling, Y., Choze, S., & Wang, L. (2017). Dynamic Bayesian network for aircraft wing health monitoring digital twin. AIAA Journal,55(3), 930–941.  https://doi.org/10.2514/1.j055201.CrossRefGoogle Scholar
  65. Liu, C., Vengayil, H., Lu, Y., & Xu, X. (2019a). A cyber-physical machine tools platform using OPC UA and MTConnect. Journal of Manufacturing Systems,51, 61–74.  https://doi.org/10.1016/j.jmsy.2019.04.006.CrossRefGoogle Scholar
  66. Liu, C., Vengayil, H., Zhong, R. Y., & Xu, X. (2018a). A systematic development method for cyber-physical machine tools. Journal of Manufacturing Systems,48, 13–24.  https://doi.org/10.1016/j.jmsy.2018.02.001.CrossRefGoogle Scholar
  67. Liu, L. L., Wan, X., Gao, Z., Li, X., & Feng, B. (2018b). Research on modelling and optimization of hot rolling scheduling. Journal of Ambient Intelligence and Humanized Computing,10(3), 1201–1216.  https://doi.org/10.1007/s12652-018-0944-7.CrossRefGoogle Scholar
  68. Liu, Q., Zhang, H., Leng, J., & Chen, X. (2018c). Digital twin-driven rapid individualised designing of automated flow-shop manufacturing system. International Journal of Production Research,7543(May), 1–17.  https://doi.org/10.1080/00207543.2018.1471243.CrossRefGoogle Scholar
  69. Liu, J., Zhou, H., Liu, X., Tian, G., Wu, M. F., Cao, L., et al. (2019b). Dynamic evaluation method of machining process planning based on the digital twin-based process model. IEEE Access,7, 1.  https://doi.org/10.1109/access.2019.2893309.CrossRefGoogle Scholar
  70. Liu, J., Zhou, H., Tian, G., Liu, X., & Jing, X. (2018d). Digital twin-based process reuse and evaluation approach for smart process planning. International Journal of Advanced Manufacturing Technology, 100(5–8), 1619–1634.  https://doi.org/10.1007/s00170-018-2748-5.CrossRefGoogle Scholar
  71. Lovas, R., Farkas, A., Marosi, A. C., Ács, S., Kovács, J., Szalóki, Á., & Kádár, B. (2018). Orchestrated platform for cyber-physical systems. Complexity, 2018.  https://doi.org/10.1155/2018/8281079.CrossRefGoogle Scholar
  72. Love, P. E. D., & Matthews, J. (2019). The ‘how’ of benefits management for digital technology: From engineering to asset management. Automation in Construction,107(August), 102930.  https://doi.org/10.1016/j.autcon.2019.102930.CrossRefGoogle Scholar
  73. Lu, R., & Brilakis, I. (2019). Digital twinning of existing reinforced concrete bridges from labelled point clusters. Automation in Construction,105(May), 102837.  https://doi.org/10.1016/j.autcon.2019.102837.CrossRefGoogle Scholar
  74. Lu, Y., Liu, C., Wang, K. I.-K., Huang, H., & Xu, X. (2020). Digital Twin-driven smart manufacturing: Connotation, reference model, applications and research issues. Robotics and Computer-Integrated Manufacturing,61, 101837.  https://doi.org/10.1016/j.rcim.2019.101837.CrossRefGoogle Scholar
  75. Lu, Y., Min, Q., Liu, Z., & Wang, Y. (2019). An IoT-enabled simulation approach for process planning and analysis: a case from engine re-manufacturing industry. International Journal of Computer Integrated Manufacturing,32(4–5), 413–429.  https://doi.org/10.1080/0951192X.2019.1571237.CrossRefGoogle Scholar
  76. Lu, Y., & Xu, X. (2018). Resource virtualization: A core technology for developing cyber-physical production systems. Journal of Manufacturing Systems,47(February), 128–140.  https://doi.org/10.1016/j.jmsy.2018.05.003.CrossRefGoogle Scholar
  77. Lu, Y., & Xu, X. (2019). Cloud-based manufacturing equipment and big data analytics to enable on-demand manufacturing services. Robotics and Computer-Integrated Manufacturing,57, 92–102.  https://doi.org/10.1016/j.rcim.2018.11.006.CrossRefGoogle Scholar
  78. Luo, W., Hu, T., Zhang, C., & Wei, Y. (2018). Digital twin for CNC machine tool: Modeling and using strategy. Journal of Ambient Intelligence and Humanized Computing,10(3), 1129–1140.  https://doi.org/10.1007/s12652-018-0946-5.CrossRefGoogle Scholar
  79. Mabkhot, M., Al-Ahmari, A., Salah, B., & Alkhalefah, H. (2018). Requirements of the smart factory system: A survey and perspective. Machines,6(2), 23.  https://doi.org/10.3390/machines6020023.CrossRefGoogle Scholar
  80. MacDonald, C., Dion, B., & Davoudabadi, M. (2017). Creating a digital twin for a pump. ANSYS Advance, 1, 8–10.Google Scholar
  81. Madni, A., Madni, C., & Lucero, S. (2019). Leveraging digital twin technology in model-based systems engineering. Systems,7(1), 7.  https://doi.org/10.3390/systems7010007.CrossRefGoogle Scholar
  82. Mishra, D., Roy, R. B., Dutta, S., Pal, S. K., & Chakravarty, D. (2018). A review on sensor based monitoring and control of friction stir welding process and a roadmap to Industry 4.0. Journal of Manufacturing Processes,36, 373–397.  https://doi.org/10.1016/j.jmapro.2018.10.016.CrossRefGoogle Scholar
  83. Moreno, A., Velez, G., Ardanza, A., Barandiaran, I., de Infante, Á. R., & Chopitea, R. (2017). Virtualisation process of a sheet metal punching machine within the Industry 4.0 vision. International Journal on Interactive Design and Manufacturing,11(2), 365–373.  https://doi.org/10.1007/s12008-016-0319-2.CrossRefGoogle Scholar
  84. Morgan, J., & O’Donnell, G. E. (2018). Cyber physical process monitoring systems. Journal of Intelligent Manufacturing,29(6), 1317–1328.  https://doi.org/10.1007/s10845-015-1180-z.CrossRefGoogle Scholar
  85. Morse, E., Dantan, J.-Y., Anwer, N., Söderberg, R., Moroni, G., Qureshi, A. J., et al. (2018). Tolerancing: Managing uncertainty from conceptual design to final product. CIRP Annuals,67(2), 695–717.CrossRefGoogle Scholar
  86. Moyne, J., & Iskandar, J. (2017). Big data analytics for smart manufacturing: Case studies in semiconductor manufacturing. Processes,5(4), 39.  https://doi.org/10.3390/pr5030039.CrossRefGoogle Scholar
  87. Nasir, M. F. M., Rahim, A. R. A., & Hamzah, H. S. (2016). Supply chain management framework development for new multiple life cycle product development. In IEEE international conference on industrial engineering and engineering management, 2016-December (pp. 812–816).  https://doi.org/10.1109/ieem.2016.7797989.
  88. Nikolakis, N., Alexopoulos, K., Xanthakis, E., & Chryssolouris, G. (2019). The digital twin implementation for linking the virtual representation of human-based production tasks to their physical counterpart in the factory-floor. International Journal of Computer Integrated Manufacturing,32(1), 1–12.  https://doi.org/10.1080/0951192X.2018.1529430.CrossRefGoogle Scholar
  89. Omer, M., Margetts, L., Hadi Mosleh, M., Hewitt, S., & Parwaiz, M. (2019). Use of gaming technology to bring bridge inspection to the office. Structure and Infrastructure Engineering,15(10), 1292–1307.  https://doi.org/10.1080/15732479.2019.1615962.CrossRefGoogle Scholar
  90. Oracle. (2017). Digital twins for IoT applications: A comprehensive approach to implementing IoT digital twins, (January) (pp. 1–9). https://www.oracle.com/assets/digital-twins-for-iot-apps-wp-3491953.pdf. Accessed 22 June 2019.
  91. Oyekan, J. O., Hutabarat, W., Tiwari, A., Grech, R., Aung, M. H., Mariani, M. P., et al. (2018). The effectiveness of virtual environments in developing collaborative strategies between industrial robots and humans. Robotics and Computer-Integrated Manufacturing,55, 41–54.  https://doi.org/10.1016/j.rcim.2018.07.006.CrossRefGoogle Scholar
  92. Park, K. T., Im, S. J., Kang, Y. S., Noh, S. D., Kang, Y. T., & Yang, S. G. (2019). Service-oriented platform for smart operation of dyeing and finishing industry. International Journal of Computer Integrated Manufacturing,32(3), 307–326.  https://doi.org/10.1080/0951192X.2019.1572225.CrossRefGoogle Scholar
  93. Petković, T., Puljiz, D., Marković, I., & Hein, B. (2019). Human intention estimation based on hidden Markov model motion validation for safe flexible robotized warehouses. Robotics and Computer-Integrated Manufacturing, 57, 182–196.CrossRefGoogle Scholar
  94. Popa, C. L., Cotet, C. E., Popescu, D., Solea, M. F., Şaşcîm, S. G., & Dobrescu, T. (2018). Material flow design and simulation for a glass panel recycling installation. Waste Management and Research,36(7), 653–660.  https://doi.org/10.1177/0734242X18775487.CrossRefGoogle Scholar
  95. Posada, J., Toro, C., Barandiaran, I., Oyarzun, D., Stricker, D., De Amicis, R., et al. (2015). Visual computing as a key enabling technology for industrie 4.0 and industrial internet. IEEE Computer Graphics and Applications,35(2), 26–40.  https://doi.org/10.1109/mcg.2015.45.CrossRefGoogle Scholar
  96. Qi, Q., & Tao, F. (2018). Digital twin and big data towards smart manufacturing and Industry 4.0: 360 degree comparison. IEEE Access,6, 3585–3593.  https://doi.org/10.1109/ACCESS.2018.2793265.CrossRefGoogle Scholar
  97. Raman, V., & Hassanaly, M. (2019). Emerging trends in numerical simulations of combustion systems. Proceedings of the Combustion Institute,37(2), 2073–2089.  https://doi.org/10.1016/j.proci.2018.07.121.CrossRefGoogle Scholar
  98. Reim, W., Parida, V., & Örtqvist, D. (2015). Product-service systems (PSS) business models and tactics - a systematic literature review. Journal of Cleaner Production,97, 61–75.  https://doi.org/10.1016/j.jclepro.2014.07.003.CrossRefGoogle Scholar
  99. Research, G. V. (2018). Digital twin market size, share & trends analysis report by end use. Market Research Report.Google Scholar
  100. Rodič, B. (2017). Industry 4.0 and the new simulation modelling paradigm. Organizacija,50(3), 193–207.  https://doi.org/10.1515/orga-2017-0017.CrossRefGoogle Scholar
  101. Rojko, A. (2017). Industry 4.0 concept: Background and overview. International Journal of Interactive Mobile Technologies (iJIM),11(5), 77–90.CrossRefGoogle Scholar
  102. Schleich, B., Anwer, N., Mathieu, L., & Wartzack, S. (2017). Shaping the digital twin for design and production engineering. CIRP Annals - Manufacturing Technology,66(1), 141–144.  https://doi.org/10.1016/j.cirp.2017.04.040.CrossRefGoogle Scholar
  103. Schluse, M., Priggemeyer, M., Atorf, L., & Rossmann, J. (2018). Experimentable digital twins-streamlining simulation-based systems engineering for industry 40. IEEE Transactions on Industrial Informatics,14(4), 1722–1731.  https://doi.org/10.1109/TII.2018.2804917.CrossRefGoogle Scholar
  104. Schneider, G. F., Wicaksono, H., & Ovtcharova, J. (2019). Virtual engineering of cyber-physical automation systems: The case of control logic. Advanced Engineering Informatics,39, 127–143.  https://doi.org/10.1016/j.aei.2018.11.009.CrossRefGoogle Scholar
  105. Senthilnathan, K., & Annapoorani, I. (2018). Multi-port current source inverter for smart microgrid applications: A cyber physical paradigm. Electronics,8(1), 1.  https://doi.org/10.3390/electronics8010001.CrossRefGoogle Scholar
  106. Seuring, S., & Müller, M. (2008). From a literature review to a conceptual framework for sustainable supply chain management. Journal of Cleaner Production,16(15), 1699–1710.  https://doi.org/10.1016/j.jclepro.2008.04.020.CrossRefGoogle Scholar
  107. Sharif Ullah, A. M. M. (2019). Modeling and simulation of complex manufacturing phenomena using sensor signals from the perspective of Industry 4.0. Advanced Engineering Informatics,39, 1–13.  https://doi.org/10.1016/j.aei.2018.11.003.CrossRefGoogle Scholar
  108. Sierla, S., Kyrki, V., Aarnio, P., & Vyatkin, V. (2018). Automatic assembly planning based on digital product descriptions. Computers in Industry,97, 34–46.  https://doi.org/10.1016/j.compind.2018.01.013.CrossRefGoogle Scholar
  109. Söderberg, R., Wärmefjord, K., Carlson, J. S., & Lindkvist, L. (2017). Toward a digital twin for real-time geometry assurance in individualized production. CIRP Annals - Manufacturing Technology,66(1), 137–140.  https://doi.org/10.1016/j.cirp.2017.04.038.CrossRefGoogle Scholar
  110. Söderberg, R., Wärmefjord, K., Madrid, J., Lorin, S., Forslund, A., & Lindkvist, L. (2018). An information and simulation framework for increased quality in welded components. CIRP Annals,67(1), 165–168.  https://doi.org/10.1016/j.cirp.2018.04.118.CrossRefGoogle Scholar
  111. Stark, J. (2016). Product lifecycle management (Vol. 1). Berlin: Springer.  https://doi.org/10.1007/978-3-319-24436-5.CrossRefGoogle Scholar
  112. Stark, R., Kind, S., & Neumeyer, S. (2017). Innovations in digital modelling for next generation manufacturing system design. CIRP Annals - Manufacturing Technology,66(1), 169–172.  https://doi.org/10.1016/j.cirp.2017.04.045.CrossRefGoogle Scholar
  113. Sun, X., Bao, J., Li, J., Zhang, Y., Liu, S., & Zhou, B. (2020). A digital twin-driven approach for the assembly-commissioning of high precision products. Robotics and Computer-Integrated Manufacturing,61, 1–14.  https://doi.org/10.1016/j.rcim.2019.101839.CrossRefGoogle Scholar
  114. Tabar, R. S., Wärmefjord, K., & Söderberg, R. (2019). A method for identification and sequence optimisation of geometry spot welds in a digital twin context. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science,233(16), 5610–5621.  https://doi.org/10.1177/0954406219854466.CrossRefGoogle Scholar
  115. Tan, Y., Yang, W., Yoshida, K., & Takakuwa, S. (2019). Application of IoT-aided simulation to manufacturing systems in cyber-physical system. Machines,7(1), 2.  https://doi.org/10.3390/machines7010002.CrossRefGoogle Scholar
  116. Tao, F., Cheng, J., & Qi, Q. (2018a). IIHub: An industrial internet-of-things hub toward smart manufacturing based on cyber-physical system. IEEE Transactions on Industrial Informatics,14(5), 2271–2280.  https://doi.org/10.1109/TII.2017.2759178.CrossRefGoogle Scholar
  117. Tao, F., Cheng, J., Qi, Q., Zhang, M., Zhang, H., & Sui, F. (2018b). Digital twin-driven product design, manufacturing and service with big data. International Journal of Advanced Manufacturing Technology,94(9–12), 3563–3576.  https://doi.org/10.1007/s00170-017-0233-1.CrossRefGoogle Scholar
  118. Tao, F., & Qi, Q. (2019). New IT driven service-oriented smart manufacturing: Framework and characteristics. IEEE Transactions on Systems, Man, and Cybernetics: Systems,49(1), 81–91.  https://doi.org/10.1109/TSMC.2017.2723764.CrossRefGoogle Scholar
  119. Tao, F., Qi, Q., Liu, A., & Kusiak, A. (2018c). Data-driven smart manufacturing. Journal of Manufacturing Systems,48, 157–169.  https://doi.org/10.1016/j.jmsy.2018.01.006.CrossRefGoogle Scholar
  120. Tao, F., Qi, Q., Wang, L., & Nee, A. Y. C. (2019). Digital twins and cyber-physical systems toward smart manufacturing and Industry 4.0: Correlation and comparison. Engineering,5(4), 653–661.  https://doi.org/10.1016/j.eng.2019.01.014.CrossRefGoogle Scholar
  121. Tao, F., Sui, F., Liu, A., Qi, Q., Zhang, M., Song, B., et al. (2018d). Digital twin-driven product design framework. International Journal of Production Research,7543, 1–19.  https://doi.org/10.1080/00207543.2018.1443229.CrossRefGoogle Scholar
  122. Tao, F., & Zhang, M. (2017). Digital twin shop–floor: A new shop–floor paradigm towards smart manufacturing. IEEE Access,5, 20418–20427.  https://doi.org/10.1109/ACCESS.2017.2756069.CrossRefGoogle Scholar
  123. Tao, F., Zhang, H., Liu, A., & Nee, A. Y. C. (2018e). Digital twin in industry: State-of-the-art. IEEE Transactions on Industrial Informatics,15(4), 2405–2415.  https://doi.org/10.1109/TII.2018.2873186.CrossRefGoogle Scholar
  124. Tao, F., Zhang, M., Liu, Y., & Nee, A. Y. C. (2018f). Digital twin driven prognostics and health management for complex equipment. CIRP Annals,67(1), 169–172.  https://doi.org/10.1016/j.cirp.2018.04.055.CrossRefGoogle Scholar
  125. Taylor, S. J. E. (2019). Distributed simulation: State-of-the-art and potential for operational research. European Journal of Operational Research,273(1), 1–19.  https://doi.org/10.1016/j.ejor.2018.04.032.CrossRefGoogle Scholar
  126. Thönes, J. (2015). Microservices. IEEE Software, 32(1), 116.CrossRefGoogle Scholar
  127. Uhlemann, T. H. J., Schock, C., Lehmann, C., Freiberger, S., & Steinhilper, R. (2017). The digital twin: Demonstrating the potential of real time data acquisition in production systems. Procedia Manufacturing,9, 113–120.  https://doi.org/10.1016/j.promfg.2017.04.043.CrossRefGoogle Scholar
  128. Wang, H. K., Haynes, R., Huang, H. Z., Dong, L., & Atluri, S. N. (2015). The use of high-performance fatigue mechanics and the extended Kalman/particle filters, for diagnostics and prognostics of aircraft structures. CMES - Computer Modeling in Engineering and Sciences,105(1), 1–24.Google Scholar
  129. Wang, X. V., & Wang, L. (2019). Digital twin-based WEEE recycling, recovery and remanufacturing in the background of Industry 4.0. International Journal of Production Research,57(12), 3892–3902.  https://doi.org/10.1080/00207543.2018.1497819.CrossRefGoogle Scholar
  130. Wang, J., Ye, L., Gao, R. X., Li, C., & Zhang, L. (2019). Digital Twin for rotating machinery fault diagnosis in smart manufacturing. International Journal of Production Research,57(12), 3920–3934.  https://doi.org/10.1080/00207543.2018.1552032.CrossRefGoogle Scholar
  131. Wang, W., Zhang, Y., & Zhong, R. Y. (2020). A proactive material handling method for CPS enabled shop–floor. Robotics and Computer-Integrated Manufacturing,61, 101849.  https://doi.org/10.1016/j.rcim.2019.101849.CrossRefGoogle Scholar
  132. Wirtz, B. W., Pistoia, A., Ullrich, S., & Göttel, V. (2016). Business models: Origin, development and future research perspectives. Long Range Planning,49(1), 36–54.  https://doi.org/10.1016/j.lrp.2015.04.001.CrossRefGoogle Scholar
  133. Xia, T., & Xi, L. (2019). Manufacturing paradigm-oriented PHM methodologies for cyber-physical systems. Journal of Intelligent Manufacturing,30(4), 1659–1672.  https://doi.org/10.1007/s10845-017-1342-2.CrossRefGoogle Scholar
  134. Xie, J., Wang, X., Yang, Z., & Hao, S. (2019). Virtual monitoring method for hydraulic supports based on digital twin theory. Mining Technology: Transactions of the Institute of Mining and Metallurgy,128(2), 77–87.  https://doi.org/10.1080/25726668.2019.1569367.CrossRefGoogle Scholar
  135. Xu, X. (2017). Machine tool 4.0 for the new era of manufacturing. International Journal of Advanced Manufacturing Technology,92(5–8), 1893–1900.  https://doi.org/10.1007/s00170-017-0300-7.CrossRefGoogle Scholar
  136. Xu, Y., Sun, Y., Liu, X., & Zheng, Y. (2019). A digital-twin-assisted fault diagnosis using deep transfer learning. IEEE Access,7, 1.  https://doi.org/10.1109/access.2018.2890566.CrossRefGoogle Scholar
  137. Zhang, H., Liu, Q., Chen, X., Zhang, D., & Leng, J. (2017). A digital twin-based approach for designing and multi-objective optimization of hollow glass production line. IEEE Access,5, 26901–26911.  https://doi.org/10.1109/ACCESS.2017.2766453.CrossRefGoogle Scholar
  138. Zhang, Z., Wang, X., Wang, X., Cui, F., & Cheng, H. (2019). A simulation-based approach for plant layout design and production planning. Journal of Ambient Intelligence and Humanized Computing,10(3), 1217–1230.  https://doi.org/10.1007/s12652-018-0687-5.CrossRefGoogle Scholar
  139. Zhang, H., Zhang, G., & Yan, Q. (2018). Digital twin-driven cyber-physical production system towards smart shop–floor. Journal of Ambient Intelligence and Humanized Computing.  https://doi.org/10.1007/s12652-018-1125-4.CrossRefGoogle Scholar
  140. Zhao, R., Yan, D., Liu, Q., Leng, J., Wan, J., Chen, X., et al. (2019). Digital twin-driven cyber-physical system for autonomously controlling of micro punching system. IEEE Access,7, 9459–9469.  https://doi.org/10.1109/ACCESS.2019.2891060.CrossRefGoogle Scholar
  141. Zheng, P., Lin, T.-J., Chen, C.-H., & Xu, X. (2018a). A systematic design approach for service innovation of smart product-service systems. Journal of Cleaner Production,201, 657–667.  https://doi.org/10.1016/j.jclepro.2018.08.101.CrossRefGoogle Scholar
  142. Zheng, P., Sang, Z., Zhong, R. Y., Liu, Y., Liu, C., & Mubarok, K, et al. (2018d). Smart manufacturing systems for Industry 4.0: Conceptual framework, scenarios, and future perspectives. Frontiers of Mechanical Engineering, 13(2), 137–150.CrossRefGoogle Scholar
  143. Zheng, P., Xu, X., & Chen, C. H. (2018b). A data-driven cyber-physical approach for personalised smart, connected product co-development in a cloud-based environment. Journal of Intelligent Manufacturing.  https://doi.org/10.1007/s10845-018-1430-y.CrossRefGoogle Scholar
  144. Zheng, Y., Yang, S., & Cheng, H. (2018c). An application framework of digital twin and its case study. Journal of Ambient Intelligence and Humanized Computing,10(3), 1–13.  https://doi.org/10.1007/s12652-018-0911-3.CrossRefGoogle Scholar
  145. Zhuang, C., Liu, J., & Xiong, H. (2018). Digital twin-based smart production management and control framework for the complex product assembly shop–floor. International Journal of Advanced Manufacturing Technology,96(1–4), 1149–1163.  https://doi.org/10.1007/s00170-018-1617-6.CrossRefGoogle Scholar
  146. Zobel-Roos, S., Schmidt, A., Mestmäcker, F., Mouellef, M., Huter, M., Uhlenbrock, L., et al. (2019). Accelerating biologics manufacturing by modeling or: Is approval under the QbD and PAT approaches demanded by authorities acceptable without a digital-twin? Processes,7(2), 94.  https://doi.org/10.3390/pr7020094.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingaporeSingapore
  2. 2.Delta-NTU Corporate Laboratory for Cyber-Physical System, School of Electrical and Electronic EngineeringNanyang Technological UniversitySingaporeSingapore
  3. 3.Department of Industrial and Systems EngineeringThe Hong Kong Polytechnic UniversityHung HomChina

Personalised recommendations