Skip to main content

Advertisement

Log in

An EPQ model with promotional demand in random planning horizon: population varying genetic algorithm approach

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

One of the economic production quantity problems that have been of interest to researchers is the production with reworking of the imperfect items including waste most disposal form and vending the units. The available models in the literature assumed that the decay rate of the items is satisfied from three different points of view: (i) minimum demands of the customer’s requirement, (ii) demands to be enhanced for lower selling price and (iii) demands of the customers who are motivated by the advertisement. The model is developed over a finite random planning horizon, which is assumed to follow the exponential distribution with known parameters. The model has been illustrated with a numerical example, whose parametric inputs are estimated from market survey. Here the model is optimized by using a population varying genetic algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ali, Sadia Samar, Madaan, J., Chan, F. T. S., & Kannan, S. (2013). Inventory management of perishable products: A time decay linked logistic approach. International Journal of Production Research, 51(13), 3864–3879.

    Article  Google Scholar 

  • Buzacott, J. A. (1975). Economic order quantities with inflation. Operational Research Quarterly, 26, 553–558.

    Article  Google Scholar 

  • Cardenas-Barron, L. E., & Sana, S. S. (2015). Multi-item EOQ inventory model for a two-layer supply chain when demand varies with a promotional effort. Applied Mathematical Modelling, 39(21), 6725–6737.

    Article  Google Scholar 

  • Chan, F. T. S., & Prakash, A. (2012). Inventory management in a lateral collaborative manufacturing supply chain: A simulation study. International Journal of Production Research, 50(16), 4670–4685.

    Article  Google Scholar 

  • Chan, F. T. S., Tibrewal, R. K., Prakash, A., & Tiwari, M. K. (2015). A biased random key genetic algorithm approach for inventory-based multi-item lot-sizing problem. Proceedings of The IMechE Part B: Journal of Engineering Manufacture, 229(1), 157–171.

    Article  Google Scholar 

  • Chan, F. T. S., & Wang, Z. (2014). Robust production control policy for a multiple machines and multiple product-types manufacturing system with inventory inaccuracy. International Journal of Production Research, 52(16), 4803–4819.

    Article  Google Scholar 

  • Das, D., Kar, M. B., Roy, A., & Kar, S. (2012). Two-warehouse production model for deteriorating inventory items with stock-dependent demand under inflation over a random planning horizon. Central European Journal of Operations Research, 20(2), 251–280.

    Article  Google Scholar 

  • Das, B., & Maiti, M. (2007). An application of bi-level newsboy problem in two substitutable items under capital cost. Applied Mathematics and Computation, 190(1), 410–422.

    Article  Google Scholar 

  • Dey, J. K., Kar, S., & Maiti, M. (2004). An EOQ model with fuzzy lead time over a finite time horizon under inflation and time value of money. Tamsui Oxford Journal of Management Sciences, 20, 57–77.

    Google Scholar 

  • Dey, J. K., Mondal, S. K., & Maiti, M. (2008). Two storage inventory problem with dynamic demand and interval valued lead-time over finite time horizon under inflation and time-value of money. European Journal of Operational Research, 185, 170–194.

    Article  Google Scholar 

  • Dubois, D., & Prade, H. (1980). Fuzzy sets and system-theory and application. New York: Academic.

    Google Scholar 

  • Goldberg, D. E. (1989). Genetic algorithms: Search, optimization and machine learning. Massachusetts: Addison Wesley.

    Google Scholar 

  • Goyal, S. K., & Cardenas-Barron, L. E. (2002). Note on: Economic production quantity model for items with imperfect quality-a practical approach. International Journal of Production Economics, 77(1), 85–87.

    Article  Google Scholar 

  • Gumasta, K., Chan, F. T. S., & Tiwari, M. K. (2012). An incorporated inventory transport system with two types of customers for multiple perishable goods. International Journal of Production Economics, 139(2), 678–686.

    Article  Google Scholar 

  • Hosseini, S., & Al Khaled, A. (2014). A survey on the imperialist competitive algorithm metaheuristic: Implementation in engineering domain and directions for future research. Applied Soft Computing, 24, 1078–1094.

    Article  Google Scholar 

  • Hosseini, S., Al Khaled, A., & Vadlamani, S. (2014). Hybrid imperialist competitive algorithm, variable neighborhood search, and simulated annealing for dynamic facility layout problem. Neural Computing and Applications, 25(7–8), 1871–1885.

    Article  Google Scholar 

  • Jana, D. K., Das, B., & Maiti, M. (2014). Multi-item partial backlogging inventory models over random planning horizon in random fuzzy environment. Applied Soft Computing, 21, 12–27.

    Article  Google Scholar 

  • Khouja, M. (1995). The economic production lot size model under volume flexibility. Computers and Operations Research, 22, 515–525.

    Article  Google Scholar 

  • Khouja, M., & Mehrez, A. (1994). An economic production lot size model with imperfect quality and variable production rate. Journal of the Operational Research Society, 45(12), 1405–1417.

    Article  Google Scholar 

  • Kumar, V., Prakash, Tiwari, M. K., & Chan, F. T. S. (2006). Stochastic make-to-stock inventory deployment problem: an endosymbiotic psychoclonal algorithm based approach. International Journal of Production Research, 44(11), 2245–2263.

    Article  Google Scholar 

  • Last, M., & Eyal, S. (2005). A fuzzy-based lifetime extension of genetic algorithms. Fuzzy Sets and Systems, 149, 131–147.

    Article  Google Scholar 

  • Manna, A. K., Dey, J. K., & Mondal, S. K. (2014). Three-layer supply chain in an imperfect production inventory model with two storage facilities under fuzzy rough environment. Journal of Uncertainty Analysis and Applications, 2(17), 1–31. doi:10.1186/s40467-014-0017-1.

    Article  Google Scholar 

  • Michalewicz, Z. Genetic Algorithms + Data Structures= Evolution Programs. Springer(Indian) Private Ltd., (2009), Chapter 2 & 3.

  • Moattar, Husseini S. M., O’Brien, C., & Hosseini, S. T. (2006). A method to enhance volume flexibility in JIT production control. International Journal of Production Economics, 104(2), 653–665.

    Article  Google Scholar 

  • Moon, I., & Yun, W. (1993). An economic order quantity model with a random planning horizon. The Engineering Economist, 39, 77–86.

    Article  Google Scholar 

  • Roy, A., Maiti, M. K., Kar, S., & Maiti, M. (2009). An inventory model for a deteriorating item with displayed stock dependent demand under fuzzy inflation and time discounting over a random planning horizon. Applied Mathematical Modelling, 33, 744–759.

    Article  Google Scholar 

  • Salameh, M. K., & Jaber, M. Y. (2000). Economic production quantity model for items with imperfect quality. International Journal of Production Economics, 64, 59–64.

    Article  Google Scholar 

  • Sana, S., Gogal, S. K., & Chaudhuri, K. S. (2007b). On a volume flexible inventory model for items with an imperfect production system. International Journal of Operational Research, 2(1), 64–80.

    Article  Google Scholar 

  • Sana, S., Gogal, S. K., & Chaudhuri, K. S. (2007). An imperfect production Process in a volume flexible inventory model. International Journal of Production Economics, 105, 548–559.

    Article  Google Scholar 

  • Taleizadeh, A. A., & Nematollahi, M. (2014). An inventory control problem for deteriorating items with back-ordering and financial considerations. Applied Mathematical Modelling, 38(1), 93–109.

    Article  Google Scholar 

  • Wadhwa, S., Bibhushan, & Chan, F. T. S. (2009). Inventory performance of some supply chain inventory policies under impulse demands. International Journal of Production Research, 47(12), 3307–3332.

    Article  Google Scholar 

  • Wang, Z., & Chan, F. T. S. (2015). A robust replenishment and production control policy for a single-stage production/inventory system with inventory inaccuracy. IEEE Transactions on Systems, Man, and Cybernetics: Part A-Systems, 45(2), 326–337.

    Article  Google Scholar 

  • Yang, H.-L., Teng, J.-T., & Chern, M.-S. (2010). An inventory model under inflation for deteriorating items with stock-dependent consumption rate and partial backlogging shortages. International Journal of Production Economics, 123, 8–19.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are heartily thankful to the Honorable Reviewers for their contractive comments to improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. K. Manna, B. Das, J. K. Dey or S. K. Mondal.

Appendix

Appendix

A1

In the demand expression \(D^1_1(S^1)=\frac{A^1(s^1_{max}-s^1)}{s^1-s^1_{max}}\) the input parameter \(s^1_{min}\) is taken per unit total requirement input parameter cost. Other two parameters \(A^1\), \(s^1_{max}\) are computed by the solving following two regression lines.

$$\begin{aligned}&\frac{1}{n}\sum _{i=1}^{n}D^1(i)s^1(i)-\frac{s^1_{min}}{n}\sum _{i=1}^{n}D^1(i)\\&\quad =A^1\Big [s^1_{max}-\frac{1}{n}\sum _{i=1}^{n}s^1(i)\Big ]\\&\quad \text{ and }\,\, \frac{1}{n}\sum _{i=1}^{n}\{D^1(i)\}^2s^1(i)-\frac{s^1_{min}}{n}\sum _{i=1}^{n}\{D^1(i)\}^2\nonumber \\&\qquad =A^1\Big [s^1_{max}\frac{1}{n}\sum _{i=1}^{n}D^1(i)-\frac{1}{n}\sum _{i=1}^{n}D^1(i)s^1(i)\Big ],\,\,\text{ for } \text{ n=7 } \end{aligned}$$

A2

Similarly for the demand expression \(D^1_2(\nu ^1)=\kappa ^1 (1-\frac{1}{\nu ^1+1})\) the input parameter \(\kappa ^1\) is estimated by the solving following regression line.

$$\begin{aligned} k^1=\frac{1}{n}\sum _{i=1}^{n}D^1(i)-\frac{1}{n}\sum _{i=1}^{n}\frac{D^1(i)}{\nu ^1(i)},\,\,\text{ for } \text{ n=7 } \end{aligned}$$

B

The following formulae are used in ANOVA comparison:

For the groups data \(X_1, X_2, \ldots , X_k\) of sizes \(n_1, n_2, \ldots , n_k\) respectively,

$$\begin{aligned}&N=\sum _{i=1}^{k}n_i\,,\,\,\,\,\overline{X}=\frac{\sum _{i=1}^{k}X_i}{N},\\&SS_t=\sum _{i=1}^{k}\sum _{i=1}^{n}(X_i-\overline{X})^2\,\,\, \text{ with } \,\,df_t=N-1\\&\text{ and, }\,\, \overline{X_1}=\frac{\sum X_1}{n_1};\,\,\overline{X_2}=\frac{\sum X_2}{n_2};\ldots ;\\&\quad \overline{X_k}=\frac{\sum X_k}{n_k}\,\, SS_b=\sum _{i=1}^{k}[n_i(\overline{X_i}-\overline{X})^2]\, \text{ with }\,\, df_b=k-1\\&\text{ and, }\,\,SS_w=\sum _{i=1}^{k}\sum _{i=1}^{n}(X_i-\overline{X})^2\,\,\,\text{ with }\,\,df_w=N-k \end{aligned}$$

Finally, \(s^2_t=\frac{SS_t}{df_t}=\frac{SS_t}{N-1};\,\,s^2_b=\frac{SS_b}{df_b}=\frac{SS_b}{k-1};\,\,s^2_w=\frac{SS_w}{df_w}=\frac{SS_w}{N-k}.\) and \(F=\frac{\text{ greater } \text{ mean } \text{ square }}{\text{ lesser } \text{ mean } \text{ square }}=\frac{s^2_b}{s^2_w}.\)

df of \(F:k-1, N-k\).

C1

$$\begin{aligned}&\sum _{i=1}^{N^j}\Big [SR^j_i-PC^j_i-SC^j_i-RC^j_i-HC^j_i\Big ]\\&\quad =\Big [\frac{s^jD^j}{R}(1-e^{-RT^j})-\frac{1}{R}(P^j_0+P^j_1D^j)(1-e^{-Rt^j_1})\\&\qquad \{c^j_p + c^j_{sr}+r^j_c{\delta ^j(1-\beta ^j)}\}-\frac{h^j_c}{R^2}\Big \{\{\beta ^j+\delta ^j(1-\beta ^j)\}P^j_0\\&\quad +[\{\beta ^j+\delta ^j(1-\beta ^j)\}P^j_1-1]D^j\Big \}\{1-(1+Rt^j_1)e^{-Rt^j_1}\}\\&\quad -\frac{h^j_cD^j}{R^2}\Big \{e^{-RT^j}-\{R(T^j-t^j_1)+1\}e^{-Rt^j_1}\Big \}\Big ]\sum _{i=1}^{N^j}e^{-R(i-1)T^j}\\&\quad =\Big [\frac{s^jD^j}{R}(1-e^{-RT^j})-\frac{1}{R}(P^j_0+P^j_1D^j)(1-e^{-Rt^j_1})\\&\qquad \{c^j_p + c^j_{sr}+r^j_c{\delta ^j(1-\beta ^j)}\}\\&\quad -\frac{h^j_c}{R^2}\Big \{\{\beta ^j+\delta ^j(1-\beta ^j)\}P^j_0\\&\qquad +[\{\beta ^j+\delta ^j(1-\beta ^j)\}P^j_1-1]D^j\Big \}\{1-(1+Rt^j_1)e^{-Rt^j_1}\}\\&\quad -\frac{h^j_cD^j}{R^2}\Big \{e^{-RT^j}-\{R(T^j-t^j_1)+1\}e^{-Rt^j_1}\Big \}\Big ]\\&\qquad \frac{1-e^{-N^jRT^j}}{1-e^{-RT^j}} \end{aligned}$$

C2

$$\begin{aligned}&\sum _{N^j=0}^{\infty }\int _{N^jT^j}^{(N^j+1)T^j} TP(N^j,T^j)f(h)\,dh\\&\quad = \Big [\frac{s^jD^j}{R}(1-e^{-RT^j})-\frac{1}{R}(P^j_0+P^j_1D^j)(1-e^{-Rt^j_1})\\&\qquad \{c^j_p + c^j_{sr}+r^j_c{\delta ^j(1-\beta ^j)}\}\\&\quad -\frac{h^j_c}{R^2}\Big \{\{\beta ^j+\delta ^j(1-\beta ^j)\}P^j_0+[\{\beta ^j+\delta ^j(1-\beta ^j)\}P^j_1-1]D^j\Big \}\\&\qquad \{1-(1+Rt^j_1)e^{-Rt^j_1}\}\\&\quad -\frac{h^j_cD^j}{R^2}\Big \{e^{-RT^j}-\{R(T^j-t^j_1)+1\}e^{-Rt^j_1}\Big \}\Big ]\\&\qquad \sum _{N^j=0}^{\infty }\frac{1-e^{-N^jRT^j}}{1-e^{-RT^j}} \Big \{e^{-N^jT^j\lambda }-e^{-(N^j+1)T^j\lambda }\Big \}\\&\quad = \Big [\frac{s^jD^j}{R}(1-e^{-RT^j})-\frac{1}{R}(P^j_0+P^j_1D^j)(1-e^{-Rt^j_1})\\&\qquad \{c^j_p + c^j_{sr}+r^j_c{\delta ^j(1-\beta ^j)}\}\\&\quad -\frac{h^j_c}{R^2}\Big \{\{\beta ^j+\delta ^j(1-\beta ^j)\}P^j_0+[\{\beta ^j+\delta ^j(1-\beta ^j)\}P^j_1-1]D^j\Big \}\\&\qquad \{1-(1+Rt^j_1)e^{-Rt^j_1}\}\\&\quad -\frac{h^j_cD^j}{R^2}\Big \{e^{-RT^j}-\{R(T^j-t^j_1)+1\}e^{-Rt^j_1}\Big \}\Big ]\frac{e^{-\lambda T^j}}{1-e^{-(\lambda +R) T^j}} \end{aligned}$$

C3

$$\begin{aligned}&\int _{N^jT^j}^{h}{D^j}e^{-Rt}\,dt\\&\quad =\Big [\int _{N^jT^j}^{N^jT^j+t^j_1}{D^j}e^{-Rt}\,dt+ \int _{N^jT^j+t^j_1}^{h}D^je^{-Rt}\,dt\Big ]\\&\quad =\int _{N^jT^j}^{N^jT^j+t^j_1}{D^j}e^{-Rt}\,dt\\&\quad =\frac{D^j}{R}(e^{-RN^jT^j}-e^{-Rh}) \end{aligned}$$

C4

$$\begin{aligned}&\sum _{N^j=0}^{\infty }\int _{N^jT^j}^{(N^j+1)T^j} PC^j_L f(h)\,dh\\&\quad =\sum _{N^j=0}^{\infty }\int _{N^jT^j}^{N^jT^j+t^j_1} PC^j_{L_1} f(h)\,dh\\&\qquad +\sum _{N^j=0}^{\infty }\int _{N^jT^j+t^j_1}^{(N^j+1)T^j} PC^j_{L_2} f(h)\,dh\\&\quad =\frac{c^j_p}{R}(P^j_0+P^j_1D^j)\Big [\frac{R}{R+\lambda }\{1-e^{-(R+\lambda ) t^j_1}\}\\&\qquad \quad -(1-e^{-R t^j_1})e^{-\lambda T^j})\Big ]\sum _{N^j=0}^{\infty }e^{-(\lambda +R)N^jT^j}\\&\quad =\frac{c^j_p(P^j_0+P^j_1D^j)}{R\{1-e^{-(R+\lambda )T^j}\}}\\&\qquad \Big [\frac{R}{R+\lambda }\{1-e^{-(R+\lambda ) t^j_1}\}-(1-e^{-R t^j_1})e^{-\lambda T^j})\Big ] \end{aligned}$$

C5

$$\begin{aligned}&\sum _{N^j=0}^{\infty }\int _{N^jT^j}^{(N^j+1)T^j} SC^j_L f(h)\,dh\\&\quad =\sum _{N^j=0}^{\infty }\int _{N^jT^j}^{N^jT^j+t^j_1} SC^j_{L_1} f(h)\,dh\\&\qquad +\sum _{N^j=0}^{\infty }\int _{N^jT^j+t^j_1}^{(N^j+1)T^j} SC^j_{L_2}f(h)\,dh\\&\quad =\frac{c^j_{sr}}{R}(P^j_0+P^j_1D^j)\Big [\frac{R}{R+\lambda }\{1-e^{-(R+\lambda ) t^j_1}\}\\&\qquad -(1-e^{-R t^j_1})e^{-\lambda T^j})\Big ]\sum _{N^j=0}^{\infty }e^{-(\lambda +R)N^jT^j}\\&\quad =\frac{c^j_{sr}(P^j_0+P^j_1D^j)}{R\{1-e^{-(R+\lambda )T^j}\}}\Big [\frac{R}{R+\lambda }\{1-e^{-(R+\lambda ) t^j_1}\}\\&\qquad -(1-e^{-R t^j_1})e^{-\lambda T^j})\Big ] \end{aligned}$$

C6

$$\begin{aligned}&\sum _{N^j=0}^{\infty }\int _{N^jT^j}^{(N^j+1)T^j} RC^j_L f(h)\,dh\\&\quad =\sum _{N^j=0}^{\infty }\int _{N^jT^j}^{N^jT^j+t^j_1} RC^j_{L_1} f(h)\,dh\\&\qquad +\sum _{N^j=0}^{\infty }\int _{N^jT^j+t^j_1}^{(N^j+1)T^j} RC^j_{L_2}f(h)\,dh\\&\quad =\frac{\delta ^j(1-\beta ^j)r^j_c}{R}(P^j_0+P^j_1D^j)\\&\qquad \Big [\frac{R}{R+\lambda }\{1-e^{-(R+\lambda ) t^j_1}\}\\&\qquad -(1-e^{-R t^j_1})e^{-\lambda T^j})\Big ]\sum _{N^j=0}^{\infty }e^{-(\lambda +R)N^jT^j}\\&\quad =\frac{\delta ^j(1-\beta ^j)r^j_c}{R\{1-e^{-(R+\lambda )T^j}\}}(P^j_0+P^j_1D^j)\\&\qquad \Big [\frac{R}{R+\lambda }\{1-e^{-(R+\lambda ) t^j_1}\}-(1-e^{-R t^j_1})e^{-\lambda T^j})\Big ] \end{aligned}$$

C7

$$\begin{aligned}&\sum _{N^j=0}^{\infty }\int _{N^jT^j}^{(N^j+1)T^j} SR^j_L f(h)\,dh\\&\quad =\sum _{N^j=0}^{\infty }\int _{N^jT^j}^{N^jT^j+t^j_1} SR^j_{L_1} f(h)\,dh\\&\qquad +\sum _{N^j=0}^{\infty }\int _{N^jT^j+t^j_1}^{(N^j+1)T^j} SR^j_{L_2} f(h)\,dh\\&\quad =\frac{D^js^j}{R}\left[ {(1-e^{-\lambda T^j})+\frac{\lambda }{R+\lambda }(e^{-(R+\lambda )T^j}-1)}\right] \\&\qquad \sum _{N^j=0}^{\infty }e^{-(\lambda +R)N^jT^j}\\&\quad =\frac{D^js^j}{R\{1-e^{-(R+\lambda )T^j}\}}\\&\qquad \left[ {(1-e^{-\lambda T^j})+\frac{\lambda }{R+\lambda }(e^{-(R+\lambda )T^j}-1)}\right] \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manna, A.K., Das, B., Dey, J.K. et al. An EPQ model with promotional demand in random planning horizon: population varying genetic algorithm approach. J Intell Manuf 29, 1515–1531 (2018). https://doi.org/10.1007/s10845-016-1195-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-016-1195-0

Keywords

Navigation