Skip to main content

Advertisement

Log in

A dual-channel network design model in a green supply chain considering pricing and transportation mode choice

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

A green supply chain with a well-designed network can strongly influence the performance of supply chain and environment. The designed network should lead the supply chain to efficient and effective management to meet the efficient profit, sustainable effects on environment and customer needs. The proposed mathematical model in this paper identifies locations of productions and shipment quantity by exploiting the trade-off between costs, and emissions for a dual channel supply chain network. Due to considering different prices and customers zones for channels, determining the prices and strategic decision variables to meet the maximum profit for the proposed green supply chain is contemplated. In this paper, the transportation mode as a tactical decision has been considered that can affect the cost and emissions. Lead time and lost sales are considered in the modeling to reach more reality. The developed mathematical model is a mixed integer non-linear programming which is solved by GAMS. Due to NP-hard nature of the proposed model and long run time for large-size problems by GAMS, artificial immune system algorithm based on CLONALG, genetic and memetic algorithms are applied. Taguchi technique is used for parameter tuning of all meta-heuristic algorithms. Results demonstrate the strength of CLONALG rather than the other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Amini, M., & Li, H. (2015). The impact of dual-market on supply chain configuration for new products. International Journal of Production Research, 53(18), 5669–5684. doi:10.1080/00207543.2015.1058537.

    Article  Google Scholar 

  • Aras, N., & Aksen, D. (2008). Locating collection centers for distance- and incentive-dependent returns. International Journal of Production Economics, 111(2), 316–333. doi:10.1016/j.ijpe.2007.01.015.

    Article  Google Scholar 

  • Bai, C., & Sarkis, J. (2010). Green supplier development: Analytical evaluation using rough set theory. Journal of Cleaner Production, 18(12), 1200–1210. doi:10.1016/j.jclepro.2010.01.016.

    Article  Google Scholar 

  • Bersini, H., & Varela, F. (1991). Hints for adaptive problem solving gleaned from immune networks. In H.-P. Schwefel & R. Männer (Eds.), Parallel problem solving from nature (Vol. 496, pp. 343–354). Berlin Heidelberg: Springer. Lecture Notes in Computer Science.

    Chapter  Google Scholar 

  • Büyüközkan, G., & Berkol, Ç. (2011). Designing a sustainable supply chain using an integrated analytic network process and goal programming approach in quality function deployment. Expert Systems with Applications, 38(11), 13731–13748. doi:10.1016/j.eswa.2011.04.171.

    Article  Google Scholar 

  • Cardoso, S. R., Barbosa-Póvoa, A. P. F. D., & Relvas, S. (2013). Design and planning of supply chains with integration of reverse logistics activities under demand uncertainty. European Journal of Operational Research, 226(3), 436–451. doi:10.1016/j.ejor.2012.11.035.

    Article  Google Scholar 

  • Chaabane, A., Ramudhin, A., & Paquet, M. (2012). Design of sustainable supply chains under the emission trading scheme. International Journal of Production Economics, 135(1), 37–49. doi:10.1016/j.ijpe.2010.10.025.

    Article  Google Scholar 

  • Chan, F. T. S., Swarnkar, R., & Tiwari, M. K. (2005). Fuzzy goal-programming model with an artificial immune system (AIS) approach for a machine tool selection and operation allocation problem in a flexible manufacturing system. International Journal of Production Research, 43(19), 4147–4163. doi:10.1080/00207540500140823.

    Article  Google Scholar 

  • Corsano, G., Vecchietti, A. R., & Montagna, J. M. (2011). Optimal design for sustainable bioethanol supply chain considering detailed plant performance model. Computers and Chemical Engineering, 35(8), 1384–1398. doi:10.1016/j.compchemeng.2011.01.008.

    Article  Google Scholar 

  • Cutello, V., & Nicosia, G. (2002). An Immunological Approach to Combinatorial Optimization Problems. In F. Garijo, J. Riquelme, & M. Toro (Eds.), Advances in artificial intelligence—IBERAMIA 2002 (Vol. 2527, pp. 361–370). Berlin Heidelberg: Springer. Lecture Notes in Computer Science.

    Chapter  Google Scholar 

  • Dasgupta, D., & Nino, F. (2008). Immunological computation: Theory and applications. USA: Auerbach Publications.

    Book  Google Scholar 

  • Davis, P. S., & Ray, T. L. (1969). A branch-bound algorithm for the capacitated facilities location problem. Naval Research Logistics Quarterly, 16(3), 331–344. doi:10.1002/nav.3800160306.

    Article  Google Scholar 

  • de Castro, L. N., & Von Zuben, F. J. (2002). Learning and optimization using the clonal selection principle. Evolutionary Computation, IEEE Transactions on, 6(3), 239–251. doi:10.1109/TEVC.2002.1011539.

    Article  Google Scholar 

  • Dekker, R., Bloemhof, J., & Mallidis, I. (2012). Operations research for green logistics—An overview of aspects, issues, contributions and challenges. European Journal of Operational Research, 219(3), 671–679. doi:10.1016/j.ejor.2011.11.010.

    Article  Google Scholar 

  • Diabat, A., & Govindan, K. (2011). An analysis of the drivers affecting the implementation of green supply chain management. Resources, Conservation and Recycling, 55(6), 659–667. doi:10.1016/j.resconrec.2010.12.002.

    Article  Google Scholar 

  • Ebrahim, R. M., Razmi, J., & Haleh, H. (2009). Scatter search algorithm for supplier selection and order lot sizing under multiple price discount environment. Advances in Engineering Software, 40(9), 766–776. doi:10.1016/j.advengsoft.2009.02.003.

    Article  Google Scholar 

  • Elhedhli, S., & Merrick, R. (2012). Green supply chain network design to reduce carbon emissions. Transportation research Part D Transport and Environment, 17(5), 370–379. doi:10.1016/j.trd.2012.02.002.

    Article  Google Scholar 

  • Eltayeb, T. K., Zailani, S., & Ramayah, T. (2011). Green supply chain initiatives among certified companies in Malaysia and environmental sustainability: Investigating the outcomes. Resources, Conservation and Recycling, 55(5), 495–506. doi:10.1016/j.resconrec.2010.09.003.

    Article  Google Scholar 

  • Ernst & Young, (2001). Global online retailing: An Ernst and Young special report.

  • Fahimnia, B., Farahani, R. Z., & Sarkis, J. (2013). Integrated aggregate supply chain planning using memetic algorithm—A performance analysis case study. International Journal of Production Research, 51(18), 5354–5373. doi:10.1080/00207543.2013.774492.

    Article  Google Scholar 

  • Fahimnia, B., Sarkis, J., Choudhary, A., & Eshragh, A. (2015a). Tactical supply chain planning under a carbon tax policy scheme: A case study. International Journal of Production Economics, 164, 206–215. doi:10.1016/j.ijpe.2014.12.015.

    Article  Google Scholar 

  • Fahimnia, B., Sarkis, J., & Eshragh, A. (2015). A tradeoff model for green supply chain planning: A leanness-versus-greenness analysis. Omega, 54, 173–190. doi:10.1016/j.omega.2015.01.014.

    Article  Google Scholar 

  • Farmer, J. D., Packard, N. H., & Perelson, A. S. (1986). The immune system, adaptation, and machine learning. Physica D Nonlinear Phenomena, 22(1–3), 187–204. doi:10.1016/0167-2789(86)90240-X.

    Article  Google Scholar 

  • Forrest, S., Perelson, A. S., Allen, L., & Cherukuri, R. (1994). Self-nonself discrimination in a computer. In 1994 IEEE Computer Society Symposium on Research in Security and Privacy, 1994: Proceedings, 16–18 May 1994 (pp. 202–212). doi:10.1109/RISP.1994.296580.

  • Forrester Report (2000). Channel conflict crumbles.

  • Gen, M., Altiparmak, F., & Lin, L. (2006). A genetic algorithm for two-stage transportation problem using priority-based encoding. OR Spectrum, 28(3), 337–354. doi:10.1007/s00291-005-0029-9.

    Article  Google Scholar 

  • Geoffrion, A. M., & Graves, G. W. (1974). Multicommodity distribution system design by Benders decomposition. Management Science, 20(5), 822–844. doi:10.1287/mnsc.20.5.822.

    Article  Google Scholar 

  • Giarola, S., Shah, N., & Bezzo, F. (2012). A comprehensive approach to the design of ethanol supply chains including carbon trading effects. Bioresource Technology, 107, 175–185. doi:10.1016/j.biortech.2011.11.090.

    Article  Google Scholar 

  • Goldberg, D. E. (1989). Genetic algorithms in search, optimization and machine learning. USA: addison-wesley longman publishing co., inc.

    Google Scholar 

  • Guillén-Gosálbez, G., & Grossmann, I. (2010). A global optimization strategy for the environmentally conscious design of chemical supply chains under uncertainty in the damage assessment model. Computers and Chemical Engineering, 34(1), 42–58. doi:10.1016/j.compchemeng.2009.09.003.

    Article  Google Scholar 

  • Gumus, A. T., Guneri, A. F., & Keles, S. (2009). Supply chain network design using an integrated neuro-fuzzy and MILP approach: A comparative design study. Expert Systems with Applications, 36(10), 12570–12577. doi:10.1016/j.eswa.2009.05.034.

    Article  Google Scholar 

  • Hiremath, N. C., Sahu, S., & Tiwari, M. (2013). Multi objective outbound logistics network design for a manufacturing supply chain. Journal of Intelligent Manufacturing, 24(6), 1071–1084. doi:10.1007/s10845-012-0635-8.

    Article  Google Scholar 

  • Hsieh, C.-L., Liao, S.-H., & Ho, W.-C. (2014). Multi-objective dual-sale channel supply chain network design based on NSGA-II. In M. Ali, J.-S. Pan, S.-M. Chen, & M.-F. Horng (Eds.), Modern Advances in Applied Intelligence (Vol. 8481, pp. 479–489). Switzerland: Springer International Publishing. Lecture Notes in Computer Science.

    Chapter  Google Scholar 

  • Hsu, C. W., & Hu, A. H. (2008). Green supply chain management in the electronic industry. International Journal of Environmental Science and Technology, 5(2), 205–216. doi:10.1007/BF03326014.

    Article  Google Scholar 

  • Hugo, A., & Pistikopoulos, E. N. (2005). Environmentally conscious long-range planning and design of supply chain networks. Journal of Cleaner Production, 13(15), 1471–1491. doi:10.1016/j.jclepro.2005.04.011.

    Article  Google Scholar 

  • Jamshidi, R., Fatemi Ghomi, S. M. T., & Karimi, B. (2012). Multi-objective green supply chain optimization with a new hybrid memetic algorithm using the Taguchi method. Scientia Iranica, 19(6), 1876–1886. doi:10.1016/j.scient.2012.07.002.

    Article  Google Scholar 

  • Kara, S. S., & Onut, S. (2010). A stochastic optimization approach for paper recycling reverse logistics network design under uncertainty. International Journal of Environmental Science and Technology, 7(4), 717–730. doi:10.1007/BF03326181.

    Article  Google Scholar 

  • Kephart, J. O. A. (1994). biologically inspired immune system for computers. In Artificial Life IV: proceedings of the fourth international workshop on the synthesis and simulation of living systems (pp. 130–139).

  • Khalifehzadeh, S., Seifbarghy, M., & Naderi, B. (2014). Solving a fuzzy multi objective model of a production-distribution system using meta-heuristic based approaches. Journal of Intelligent Manufacturing, 1–15, doi:10.1007/s10845-014-0964-x.

  • Kumar, A., Prakash, A., Shankar, R., & Tiwari, M. K. (2006). Psycho-Clonal algorithm based approach to solve continuous flow shop scheduling problem. Expert Systems with Applications, 31(3), 504–514. doi:10.1016/j.eswa.2005.09.059.

    Article  Google Scholar 

  • Kumar, S., Teichman, S., & Timpernagel, T. (2011). A green supply chain is a requirement for profitability. International Journal of Production Research, 50(5), 1278–1296. doi:10.1080/00207543.2011.571924.

    Article  Google Scholar 

  • Le, T., & Lee, T.-R. (2013). Model selection with considering the CO2 emission alone the global supply chain. Journal of Intelligent Manufacturing, 24(4), 653–672. doi:10.1007/s10845-011-0613-6.

    Article  Google Scholar 

  • Lee, H. L., & Billington, C. (1992). Managing supply chain inventory: Pitfalls and opportunities. MIT Sloan Management Review, 33(3), 65–73.

    Google Scholar 

  • Liu, B., Zhang, R., & Xiao, M. (2010). Joint decision on production and pricing for online dual channel supply chain system. Applied Mathematical Modelling, 34(12), 4208–4218. doi:10.1016/j.apm.2010.04.018.

    Article  Google Scholar 

  • Mallidis, I., Dekker, R., & Vlachos, D. (2012). The impact of greening on supply chain design and cost: a case for a developing region. Journal of Transport Geography, 22, 118–128. doi:10.1016/j.jtrangeo.2011.12.007.

    Article  Google Scholar 

  • Markovits-Somogyi, R., Nagy, Z., & Török, Á. (2009). Greening supply chain management. Acta Technica Jaurinensis, 2(3).

  • Melo, M. T., Nickel, S., & Saldanha-da-Gama, F. (2009). Facility location and supply chain management–A review. European Journal of Operational Research, 196(2), 401–412. doi:10.1016/j.ejor.2008.05.007.

    Article  Google Scholar 

  • Min, H., & Kim, I. (2012). Green supply chain research: Past, present, and future. Logistics Research, 4(1–2), 39–47. doi:10.1007/s12159-012-0071-3.

    Article  Google Scholar 

  • Mirzapour Al-e-hashem, S. M. J., Baboli, A., & Sazvar, Z. (2013). A stochastic aggregate production planning model in a green supply chain: Considering flexible lead times, nonlinear purchase and shortage cost functions. European Journal of Operational Research, 230(1), 26–41. doi:10.1016/j.ejor.2013.03.033.

    Article  Google Scholar 

  • NPD Group, (2004). Who’s buying direct and why: consumers tell all. http://www.npdtechworld.com.

  • Panigrahi, B. K., Yadav, S. R., Agrawal, S., & Tiwari, M. K. (2007). A clonal algorithm to solve economic load dispatch. Electric Power Systems Research, 77(10), 1381–1389. doi:10.1016/j.epsr.2006.10.007.

    Article  Google Scholar 

  • Pinto-Varela, T., Barbosa-Póvoa, A. P. F. D., & Novais, A. Q. (2011). Bi-objective optimization approach to the design and planning of supply chains: Economic versus environmental performances. Computers and Chemical Engineering, 35(8), 1454–1468. doi:10.1016/j.compchemeng.2011.03.009.

    Article  Google Scholar 

  • Pishvaee, M. S., Farahani, R. Z., & Dullaert, W. (2010a). A memetic algorithm for bi-objective integrated forward/reverse logistics network design. Computers and Operations Research, 37(6), 1100–1112. doi:10.1016/j.cor.2009.09.018.

    Article  Google Scholar 

  • Pishvaee, M., Kianfar, K., & Karimi, B. (2010b). Reverse logistics network design using simulated annealing. The International Journal of Advanced Manufacturing Technology, 47(1–4), 269–281. doi:10.1007/s00170-009-2194-5.

    Article  Google Scholar 

  • Pishvaee, M. S., & Rabbani, M. (2011). A graph theoretic-based heuristic algorithm for responsive supply chain network design with direct and indirect shipment. Advances in Engineering Software, 42(3), 57–63. doi:10.1016/j.advengsoft.2010.11.001.

    Article  Google Scholar 

  • Pishvaee, M. S., & Razmi, J. (2012). Environmental supply chain network design using multi-objective fuzzy mathematical programming. Applied Mathematical Modelling, 36(8), 3433–3446. doi:10.1016/j.apm.2011.10.007.

    Article  Google Scholar 

  • Pishvaee, M. S., Razmi, J., & Torabi, S. A. (2012). Robust possibilistic programming for socially responsible supply chain network design: A new approach. Fuzzy Sets and Systems, 206, 1–20. doi:10.1016/j.fss.2012.04.010.

    Article  Google Scholar 

  • Pishvaee, M. S., Torabi, S. A., & Razmi, J. (2012b). Credibility-based fuzzy mathematical programming model for green logistics design under uncertainty. Computers and Industrial Engineering, 62(2), 624–632. doi:10.1016/j.cie.2011.11.028.

    Article  Google Scholar 

  • Quariguasi Frota Neto, J., Walther, G., Bloemhof, J., van Nunen, J. A. E. E., & Spengler, T. (2009). A methodology for assessing eco-efficiency in logistics networks. European Journal of Operational Research, 193(3), 670–682. doi:10.1016/j.ejor.2007.06.056.

    Article  Google Scholar 

  • Rajabalipour Cheshmehgaz, H., Desa, M., & Wibowo, A. (2013). A flexible three-level logistic network design considering cost and time criteria with a multi-objective evolutionary algorithm. Journal of Intelligent Manufacturing, 24(2), 277–293. doi:10.1007/s10845-011-0584-7.

    Article  Google Scholar 

  • Rajabalipour Cheshmehgaz, H., Islam, M. N., & Desa, M. (2014). A polar-based guided multi-objective evolutionary algorithm to search for optimal solutions interested by decision-makers in a logistics network design problem. Journal of Intelligent Manufacturing, 25(4), 699–726. doi:10.1007/s10845-012-0714-x.

    Article  Google Scholar 

  • Samadhi, T. M. A. A., & Hoang, K. (1998). Partners selection in a shared-CIM system. International Journal of Computer Integrated Manufacturing, 11(2), 173–182. doi:10.1080/095119298130903.

    Article  Google Scholar 

  • Shapiro, J. F. (2007). Modeling the supply chain (Vol. 2). USA: Cengage Learning.

    Google Scholar 

  • Sousa, R., Shah, N., & Papageorgiou, L. G. (2008). Supply chain design and multilevel planning–An industrial case . Computers and Chemical Engineering, 32(11), 2643–2663. doi:10.1016/j.compchemeng.2007.09.005.

    Article  Google Scholar 

  • Taguchi, G., Chowdhury, S., & Taguchi, S. (2000). Robust engineering. USA: McGraw-Hill Professional.

    Google Scholar 

  • Tiwari, M. K., Raghavendra, N., Agrawal, S., & Goyal, S. K. (2010). A Hybrid Taguchi-Immune approach to optimize an integrated supply chain design problem with multiple shipping. European Journal of Operational Research, 203(1), 95–106. doi:10.1016/j.ejor.2009.07.004.

    Article  Google Scholar 

  • Tunali, S., Ozfirat, P. M., & Ay, G. (2011). Setting order promising times in a supply chain network using hybrid simulation-analytical approach: An industrial case study. Simulation Modelling Practice and Theory, 19(9), 1967–1982. doi:10.1016/j.simpat.2011.04.014.

    Article  Google Scholar 

  • Wang, F., Lai, X., & Shi, N. (2011). A multi-objective optimization for green supply chain network design. Decision Support Systems, 51(2), 262–269. doi:10.1016/j.dss.2010.11.020.

    Article  Google Scholar 

  • Xu, H., Liu, Z. Z., & Zhang, S. H. (2012). A strategic analysis of dual-channel supply chain design with price and delivery lead time considerations. International Journal of Production Economics, 139(2), 654–663. doi:10.1016/j.ijpe.2012.06.014.

    Article  Google Scholar 

  • Yeh, W.-C. (2005). A hybrid heuristic algorithm for the multistage supply chain network problem. The International Journal of Advanced Manufacturing Technology, 26(5–6), 675–685. doi:10.1007/s00170-003-2025-z.

    Article  Google Scholar 

  • Yeh, W.-C. (2006). An efficient memetic algorithm for the multi-stage supply chain network problem. The International Journal of Advanced Manufacturing Technology, 29(7–8), 803–813. doi:10.1007/s00170-005-2556-6.

    Article  Google Scholar 

  • Yeh, W.-C., & Chuang, M.-C. (2011). Using multi-objective genetic algorithm for partner selection in green supply chain problems. Expert Systems with Applications, 38(4), 4244–4253. doi:10.1016/j.eswa.2010.09.091.

    Article  Google Scholar 

  • Yezheng, L., & Zhengping, D. (2012). Revenue Sharing Contract in Dual Channel Supply Chain in Case of Free Riding. In J. Watada, T. Watanabe, G. Phillips-Wren, R. J. Howlett, & L. C. Jain (Eds.), Intelligent decision technologies (Vol. 16, pp. 459–465). Berlin Heidelberg: Springer. Smart Innovation, Systems and Technologies.

    Chapter  Google Scholar 

  • Yu, J., Gan, M., Ni, S., & Chen, D. (2015). Multi-objective models and real case study for dual-channel FAP supply chain network design with fuzzy information. Journal of Intelligent Manufacturing, 1–15. doi:10.1007/s10845-015-1115-8.

  • Zhao, R., Neighbour, G., Han, J., McGuire, M., & Deutz, P. (2012). Using game theory to describe strategy selection for environmental risk and carbon emissions reduction in the green supply chain. Journal of Loss Prevention in the Process Industries, 25(6), 927–936. doi:10.1016/j.jlp.2012.05.004.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farnaz Barzinpour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barzinpour, F., Taki, P. A dual-channel network design model in a green supply chain considering pricing and transportation mode choice. J Intell Manuf 29, 1465–1483 (2018). https://doi.org/10.1007/s10845-015-1190-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-015-1190-x

Keywords

Navigation