Identifying maximum imbalance in datasets for fault diagnosis of gearboxes


Research into fault diagnosis in rotating machinery with a wide range of variable loads and speeds, such as the gearboxes of wind turbines, is of great industrial interest. Although appropriate sensors have been identified, an intelligent system that classifies machine states remains an open issue, due to a paucity of datasets with sufficient fault cases. Many of the proposed solutions have been tested on balanced datasets, containing roughly equal percentages of wind-turbine failure instances and instances of correct performance. In practice, however, it is not possible to obtain balanced datasets under real operating conditions. Our objective is to identify the most suitable classification technique that will depend least of all on the level of imbalance in the dataset. We start by analysing different metrics for the comparison of classification techniques on imbalanced datasets. Our results pointed to the Unweighted Macro Average of the F-measure, which we consider the most suitable metric for this diagnosis. Then, an extensive set of classification techniques was tested on datasets with varying levels of imbalance. Our conclusion is that a Rotation Forest ensemble of C4.4 decision trees, modifying the training phase of the classifier with a cost-sensitive approach, is the most suitable prediction model for this industrial task. It maintained its good performance even when the minority classes rate was as low as 6.5 %, while the majority of the other classifiers were more sensitive to the level of database imbalance and failed standard performance objectives, when the minority classes rate was lower than 10.5 %.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. 1.

    SVM is in fact a binary classifier, but it is commonly used as multi-class classifier using 1-against-1.


  1. Anand, R., Mehrotra, K., Mohan, C. K., & Ranka, S. (1995). Efficient classification for multiclass problems using modular neural networks. Neural Networks, IEEE Transactions on, 6(1), 117–124.

    Article  Google Scholar 

  2. Bagheri, M. A., Montazer, G. A., & Escalera, S., (2012). Error correcting output codes for multiclass classification: application to two image vision problems. In 2012 16th CSI international symposium on artificial intelligence and signal processing (AISP) (pp. 508–513). IEEE.

  3. Baldi, P., Brunak, S., Chauvin, Y., Andersen, C. A., & Nielsen, H. (2000). Assessing the accuracy of prediction algorithms for classification: An overview. Bioinformatics, 16(5), 412–424.

    Article  Google Scholar 

  4. Barszcz, T., & Randall, R. B. (2009). Application of spectral kurtosis for detection of a tooth crack in the planetary gear of a wind turbine. Mechanical Systems and Signal Processing, 23(4), 1352–1365. [Online]. Available

  5. Bartelmus, W., & Zimroz, R. (2009). Vibration condition monitoring of planetary gearbox under varying external load. Mechanical Systems and Signal Processing, 23(1), 246–257, special Issue: Non-linear Structural Dynamics. [Online]. Available

  6. Bradley, A. P. (1997). The use of the area under the roc curve in the evaluation of machine learning algorithms. Pattern Recognition, 30(7), 1145–1159.

    Article  Google Scholar 

  7. Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). Classification and regression trees. In Wadsworth International Group.

  8. Breiman, L. (1996). Heuristics of instability and stabilization in model selection. The Annals of Statistics, 24(6), 2350–2383.

    Article  Google Scholar 

  9. Bustillo, A., & Correa, M. (2012). Using artificial intelligence to predict surface roughness in deep drilling of steel components. Journal of Intelligent Manufacturing, 23(5), 1893–1902.

    Article  Google Scholar 

  10. Cao, Y. H., Cao, Y., Wu, G. Q., Li, Q. M., & Shi, Y. J. (2014). The analysis of monitoring system of wind turbine. Applied Mechanics and Materials, 487, 595–600.

    Article  Google Scholar 

  11. Caselitz, P., Giebhardt, J., & Mevenkamp, M. (1994). On-line fault detection and prediction in wind energy converters. In Proceedings of the EWEC (Vol. 94, pp. 623–627).

  12. Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2011). Smote: Synthetic minority over-sampling technique. arXiv preprint arXiv:1106.1813.

  13. Chawla, N. V., Lazarevic, A., Hall, L. O., & Bowyer, K. W. (2003). Smoteboost: Improving prediction of the minority class in boosting. In N. Lavrač, D. Gamberger, L. Todorovski, & H. Blockeel (Eds.), Knowledge discovery in databases: PKDD 2003 (pp 107–119). Springer.

  14. Chen, J., & Hao, G. (2012). Research on the fault diagnosis of wind turbine gearbox based on bayesian networks. Practical Applications of Intelligent Systems, 124, 217–223.

    Article  Google Scholar 

  15. Davies, A. (1998). Handbook of condition monitoring: Techniques and methodology. Chapman & Hall. [Online]. Available

  16. Dietterich, T. G., & Bakiri, G. (1995). Solving multiclass learning problems via error-correcting output codes. arXiv:cs/9501101.

  17. Essawy, M. (1998). Fault diagnosis of helicopter gearboxes using neuro-fuzzy techniques. In 52nd meeting of the MFPT society, pp. 293–302.

  18. Estabrooks, A., Jo, T., & Japkowicz, N. (2004). A multiple resampling method for learning from imbalanced data sets. Computational Intelligence, 20(1), 18–36.

    Article  Google Scholar 

  19. Ferri, C., Hernández-Orallo, J., & Salido, M. A. (2003). Volume under the roc surface for multi-class problems. In Machine learning: ECML 2003 (pp. 108–120). Springer.

  20. Filev, D. & Yager, R. R. (1994). Learning owa operator weights from data. In Fuzzy systems, 1994. IEEE World congress on computational intelligence. Proceedings of the third IEEE conference on, (pp. 468–473). IEEE.

  21. Filev, D., & Yager, R. R. (1998). On the issue of obtaining owa operator weights. Fuzzy sets and systems, 94(2), 157–169.

    Article  Google Scholar 

  22. Freund, Y., & Schapire, R. E. et al. (1996). Experiments with a new boosting algorithm. In ICML (Vol. 96, pp. 148–156).

  23. Fürnkranz, J. (2002). Round robin classification. The Journal of Machine Learning Research, 2, 721–747.

    Google Scholar 

  24. Fyfe, K., & Munck, E. (1997). Analysis of computed order tracking. Mechanical Systems and Signal Processing, 11(2), 187–205.

    Article  Google Scholar 

  25. Gajate, A., Haber, R., del Toro, R., Vega, P., & Bustillo, A. (2012). Tool wear monitoring using neuro-fuzzy techniques: A comparative study in a turning process. Journal of Intelligent Manufacturing, 23(3), 869–882.

    Article  Google Scholar 

  26. Galar, M., Fernández, A., Barrenechea, E., Bustince, H., & Herrera, F. (2012). A review on ensembles for the class imbalance problem: Bagging-, boosting-, and hybrid-based approaches. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 42(4), 463–484.

    Article  Google Scholar 

  27. García, S., & Herrera, F. (2009). Evolutionary undersampling for classification with imbalanced datasets: Proposals and taxonomy. Evolutionary Computation, 17(3), 275–306.

    Article  Google Scholar 

  28. Garg, A., & Tai, K. (2014). An ensemble approach of machine learning in evaluation of mechanical property of the rapid prototyping fabricated prototype. In Applied Mechanics and Materials (Vol. 575, pp. 493–496). Trans Tech Publ.

  29. Hameed, Z., Hong, Y., Cho, Y., Ahn, S., & Song, C. (2009). Condition monitoring and fault detection of wind turbines and related algorithms: A review. Renewable and Sustainable energy reviews, 13(1), 1–39.

    Article  Google Scholar 

  30. Harris, T. (1993). A kohonen som based, machine health monitoring system which enables diagnosis of faults not seen in the training set. In Neural networks, 1993. IJCNN’93-Nagoya. Proceedings of 1993 international joint conference on, (Vol. 1, pp. 947–950) IEEE.

  31. Hastie, T., & Tibshirani, R. (1998). Classification by pairwise coupling. The Annals of Statistics, 26(2), 451–471.

    Article  Google Scholar 

  32. He, H., & Garcia, E. A. (2009). Learning from imbalanced data. Knowledge and Data Engineering, IEEE Transactions on, 21(9), 1263–1284.

    Article  Google Scholar 

  33. Hoens, T.R., Qian, Q., Chawla, N. V., & Zhou, Z.-H. (2012). Building decision trees for the multi-class imbalance problem. In P.-N. Tan, S. Chawla, C. K. Ho, & J. Bailey (Eds.), Advances in knowledge discovery and data mining (pp. 122–134). Springer.

  34. Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal approximators. Neural Networks, 2(5), 359–366.

    Article  Google Scholar 

  35. Jeffries, W., Chambers, J., & Infield, D. (1998). Experience with bicoherence of electrical power for condition monitoring of wind turbine blades. In IEE proceedings—vision, image and signal processing (Vol. 145, no. 3, pp. 141–148). IET.

  36. John, G. H., & Langley, P. (1995). Estimating continuous distributions in bayesian classifiers. In Proceedings of the eleventh conference on uncertainty in artificial intelligence (pp. 338–345). Morgan Kaufmann Publishers Inc.

  37. Joselin Herbert, G., Iniyan, S., Sreevalsan, E., & Rajapandian, S. (2007). A review of wind energy technologies. Renewable and Sustainable Energy Reviews, 11(6), 1117–1145.

    Article  Google Scholar 

  38. Joshi, A. J., Chandran, S., Jayaraman, V. K., & Kulkarni, B. D. (2010). Hybrid support vector machine for imbalanced data in multiclass arrhythmia classification. International Journal of Functional Informatics and Personalised Medicine, 3(1), 29–47.

    Article  Google Scholar 

  39. Jurman, G., & Furlanello, C. (2010). A unifying view for performance measures in multi-class prediction. arXiv preprint arXiv:1008.2908.

  40. Kohavi, R., et al. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. IJCAI, 14(2), 1137–1145.

    Google Scholar 

  41. Krawczyk, B., & Schaefer, G. (2013). An improved ensemble approach for imbalanced classification problems. In 2013 IEEE 8th international symposium on applied computational intelligence and informatics (SACI) (pp. 423–426). IEEE.

  42. Landgrebe, T. C., & Duin, R. P. (2008). Efficient multiclass roc approximation by decomposition via confusion matrix perturbation analysis. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 30(5), 810–822.

    Article  Google Scholar 

  43. Lekou, D., Mouzakis, F., Anastasopoulo, A., & Kourosis, D. (2009). Fused acoustic emission and vibration techniques for health monitoring of wind turbine gearboxes and bearings. In European wind energy conference and exhibition, (EWEC 2009), Marseille, France (pp. 78–82). European Wind Energy Association.

  44. Lertampaiporn, S., Thammarongtham, C., Nukoolkit, C., Kaewkamnerdpong, B., & Ruengjitchatchawalya, M. (2013). Heterogeneous ensemble approach with discriminative features and modified-smotebagging for pre-mirna classification. Nucleic acids research, 41(1), e21–e21.

    Article  Google Scholar 

  45. Li, H., Lian, X., Guo, C., & Zhao, P. (2013). Investigation on early fault classification for rolling element bearing based on the optimal frequency band determination. Journal of Intelligent Manufacturing, 26(1), 1–10.

    Google Scholar 

  46. Liao, T. W. (2008). Classification of weld flaws with imbalanced class data. Expert Systems with Applications, 35(3), 1041–1052.

    Article  Google Scholar 

  47. Liu, X.-Y., & Zhou, Z.-H. (2006). The influence of class imbalance on cost-sensitive learning: An empirical study. In Data mining, ICDM’06. Sixth international conference on (pp. 970–974). IEEE.

  48. Lu, Y., Tang, J., & Luo, H. (2012). Wind turbine gearbox fault detection using multiple sensors with features level data fusion. Journal of Engineering for Gas Turbines and Power, 134(4), 042501.

    Article  Google Scholar 

  49. Modi, S., Lin, Y., Cheng, L., Yang, G., Liu, L., & Zhang, W. (2011). A socially inspired framework for human state inference using expert opinion integration. Mechatronics, IEEE/ASME Transactions on, 16(5), 874–878.

    Article  Google Scholar 

  50. Montazer, G. A., & Escalera, S., et al. (2012). Error correcting output codes for multiclass classification: Application to two image vision problems. In 2012 16th CSI international symposium on artificial intelligence and signal processing (AISP) (pp. 508–513). IEEE.

  51. Nadeau, C., & Bengio, Y. (2003). Inference for the generalization error. Machine Learning, 52(3), 239–281.

    Article  Google Scholar 

  52. Nie, M., & Wang, L. (2013). Review of condition monitoring and fault diagnosis technologies for wind turbine gearbox. Procedia CIRP, 11, 287–290.

    Article  Google Scholar 

  53. Pazzani, M. J., Merz, C. J., Murphy, P. M., Ali, K., Hume, T., & Brunk, C. (1994). Reducing misclassification costs. In ICML (Vol. 94, pp. 217–225).

  54. Provost, F., & Domingos, P. (2003). Tree induction for probability-based ranking. Machine Learning, 52(3), 199–215.

    Article  Google Scholar 

  55. Quinlan, J. R. (1993). C4.5: Programs for machine learning. Morgan Kaufmann.

  56. Rennie, J. D. (2001). Improving multi-class text classification with naive bayes. Ph.D. dissertation, Massachusetts Institute of Technology.

  57. Rodríguez, J., Kuncheva, L., & Alonso, C. (2006). Rotation forest: A new classifier ensemble method. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 28(10), 1619–1630.

    Article  Google Scholar 

  58. Salahshoor, K., Kordestani, M., & Khoshro, M. (2010). Fault detection and diagnosis of an industrial steam turbine using fusion of svm (support vector machine) and anfis (adaptive neuro-fuzzy inference system) classifiers. Energy, 35(12), 5472–5482.

    Article  Google Scholar 

  59. Samuel, P. D., & Pines, D. J. (2005). A review of vibration-based techniques for helicopter transmission diagnostics. Journal of Sound and Vibration, 282(1–2), 475–508. [Online]. Available

  60. Sánchez, L., & Couso, I. (2012). Singular spectral analysis of ill-known signals and its application to predictive maintenance of windmills with scada records. Soft Computing, 16(5), 755–768.

    Article  Google Scholar 

  61. Santos, P., Villa, L., Reñones, A., Bustillo, A., & Maudes, J. (2012). Wind turbines fault diagnosis using ensemble classifiers. Advances in Data Mining. Applications and Theoretical Aspects, 7377, 67–76.

    Google Scholar 

  62. Seiffert, C., Khoshgoftaar, T. M., Van Hulse, J., & Napolitano, A. (2010). Rusboost: A hybrid approach to alleviating class imbalance. Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on, 40(1), 185–197.

    Article  Google Scholar 

  63. Simani, S., & Fantuzzi, C. (2006). Dynamic system identification and model-based fault diagnosis of an industrial gas turbine prototype. Mechatronics, 16(6), 341–363.

    Article  Google Scholar 

  64. Simonoff, J. S. (1995). Smoothing categorical data. Journal of Statistical Planning and Inference, 47(1), 41–69.

    Article  Google Scholar 

  65. Soua, S., Van Lieshout, P., Perera, A., Gan, T.-H., & Bridge, B. (2013). Determination of the combined vibrational and acoustic emission signature of a wind turbine gearbox and generator shaft in service as a pre-requisite for effective condition monitoring. Renewable Energy, 51, 175–181.

    Article  Google Scholar 

  66. Stander, C., & Heyns, P. (2006) Transmission path phase compensation for gear monitoring under fluctuating load conditions. Mechanical Systems and Signal Processing, 20(7), 1511–1522. [Online]. Available

  67. Tan, A. C., Gilbert, D., & Deville, Y. (2003). Multi-class protein fold classification using a new ensemble machine learning approach. Genome Informatics, 14, 206–217.

    Google Scholar 

  68. Teixidor, D., Grzenda, M., Bustillo, A., & Ciurana, J. (2013). Modeling pulsed laser micromachining of micro geometries using machine-learning techniques. Journal of Intelligent Manufacturing, 1–14. doi:10.1007/s10845-013-0835-x.

  69. Vijayakumar, S., & Schaal, S. (2006). Approximate nearest neighbor regression in very high dimensions. In G. Shakhnarovich, T. Darrell, & P. Indyk (Eds.), Nearest-neighbor methods in learning and vision: Theory and practice (pp. 103–142). Cambridge, MA: MIT Press.

  70. Villa, L. F., Reñones, A., Perán, J. R., & de Miguel, L. J. (2011). Angular resampling for vibration analysis in wind turbines under non-linear speed fluctuation. Mechanical Systems and Signal Processing, 25(6), 2157–2168. [Online]. Available

  71. Villa, L. F., Reñones, A., Perán, J. R., & de Miguel, L. J. (2012). Statistical fault diagnosis based on vibration analysis for gear test-bench under non-stationary conditions of speed and load. Mechanical Systems and Signal Processing, 29, 436–446.

  72. Wang, S., & Yao, X. (2009). Diversity analysis on imbalanced data sets by using ensemble models. In Computational intelligence and data mining, 2009. IEEE symposium on CIDM’09 (pp. 324–331). IEEE.

  73. Wang, J., Gao, R. X., & Yan, R. (2014). Integration of EEMD and ICA for wind turbine gearbox diagnosis. Wind Energy, 17(5), 757–773.

  74. Wang, Y.-C., Wang, X.-B., Yang, Z.-X., & Deng, N.-Y. (2010). Prediction of enzyme subfamily class via pseudo amino acid composition by incorporating the conjoint triad feature. Protein and Peptide Letters, 17(11), 1441–1449.

    Article  Google Scholar 

  75. Wang, S., & Yao, X. (2012). Multiclass imbalance problems: Analysis and potential solutions. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 42(4), 1119–1130.

    Article  Google Scholar 

  76. Witten, I., & Frank, E. (2005). Data mining: Practical machine learning tools and techniques, 2nd ed. Morgan Kaufmann,

  77. Yager, R. R. (2004). Owa aggregation over a continuous interval argument with applications to decision making. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 34(5), 1952–1963.

    Article  Google Scholar 

  78. Zhan, Y., Makis, V., & Jardine, A. K. (2006). Adaptive state detection of gearboxes under varying load conditions based on parametric modelling. Mechanical Systems and Signal Processing, 20(1), 188–221. [Online]. Available

  79. Zhou, Z.-H., & Liu, X.-Y. (2010). On multi-class cost-sensitive learning. Computational Intelligence, 26(3), 232–257.

    Article  Google Scholar 

  80. Ziani, R., Felkaoui, A., & Zegadi, R. (2014). Bearing fault diagnosis using multiclass support vector machines with binary particle swarm optimization and regularized fisher’s criterion. Journal of Intelligent Manufacturing, 1–13. doi:10.1007/s10845-014-0987-3.

Download references


This research project has received funding from the Spanish government through Projects CENIT-2008-1028, TIN2011-24046 and IPT-2011-1265-020000 of the Ministerio de Economía y Competitividad [Ministry of Economy and Competitiveness]. Special thanks to Roberto Arnanz, Dr. Luisa F. Villa and Dr. Aníbal Reñones of the CARTIF FOUNDATION for providing the original dataset and for performing all the experimental tests and to Dr. Juan J. Rodríguez from the University of Burgos for his kind-spirited and useful advice.

Author information



Corresponding author

Correspondence to Andres Bustillo.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Santos, P., Maudes, J. & Bustillo, A. Identifying maximum imbalance in datasets for fault diagnosis of gearboxes. J Intell Manuf 29, 333–351 (2018).

Download citation


  • Fault diagnosis
  • Multi-class imbalance
  • Wind turbines
  • Ensembles
  • Metrics
  • Gearbox