Skip to main content
Log in

Digital description of products, processes and resources for task-oriented programming of assembly systems

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

The ability to enable a fast modification and system-change, in order to fulfil quickly changing market needs, is one of the essential requirements of future production systems. Against this background, the central objective of this paper is the discussion of a new concept to simplify the application of task-oriented programming for assembly systems. For this purpose, a generic and comprehensible concept is used for the modeling of resources, processes and products. The core aspect is a method for the definition of multi-vendor skills in assembly systems. The implementation of the concepts in the engineering standard AutomationML and the integration into a programming system complete this contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Arai, T., Izawa, H., Maeda, Y., Kikuchi, H., Ogawa, H., & Sugi, M. (2003). Real-time task decomposition and allocation for a multi-agent robotic assembly cell. In Proceedings of the 5’ IEEE international symposium on assembly and task planning, Besanpon, France (pp. 42–47).

  • Arai, T., Aiyama, Y., Maeda, Y., Sugi, M., & Ota, J. (2000). Agile assembly systems by plug and produce. CIRP Annals Manufacturing Technology 2000, 49(1), 1–4.

    Article  Google Scholar 

  • Backhaus, J., & Reinhart, G. (2013). Efficient application of task-oriented programming for assembly systems. In International conference on advanced intelligent mechatronics (AIM) IEEE/ASME, Wollongong, Australia (pp. 750–755).

  • Backhaus, J., & Reinhart, G. (2014). Adaptive and device independent planning module for task-oriented programming of assembly systems. In 9th CIRP conference on intelligent computation in manufacturing engineering, Naples, Italy, July 23–25, 2014, submitted and accepted for publication.

  • Backhaus, J., Ulrich, M., & Reinhart, G. (2013). Classification, modelling and mapping of skills in automated production systems. In Proceedings of the 5th international conference on changeable, agile, reconfigurable and virtual production (CARV 2013), Munich, Germany (pp. 85–89).

  • Beremiz. http://beremiz.org/. Accessed 25 June 2014.

  • Bergert, M., Diedrich, C., Kiefer, J., & Bär, T. (2007). Automated PLC software generation based on standardized digital process information. In Proceedings of ETFA’07 (pp. 352–359).

  • Borangiu, T., et al. (2013). Distributed manufacturing control with extended CNP interaction of intelligent products. Journal of Intelligent Manufacturing, 25, 1065–1075.

    Article  Google Scholar 

  • Cândido, G., & Barata, J. A. (2007). Multiagent control system for shop floor assembly. In Proceedings of the 3rd international conference on industrial applications of holonic and multi-agent systems (pp. 293–302).

  • Cavin, S., Ferreira, P., & Lohse, N. (2013). Dynamic skill allocation methodology for evolvable assembly systems. In 11th IEEE international conference on industrial informatics (pp. 218–223).

  • Cha, J.-M., et al. (2014). A roadmap for implementing new manufacturing technology based on STEP-NC. Journal of Intelligent Manufacturing, 25, 1–15.

    Article  Google Scholar 

  • Cuiper, R. (2000). Durchgängige rechnergestützte Planung und Steuerung von Montagevorgängen. Ph.D. dissertation Technische Universität München, München: Utz.

  • Deja, M., & Siemiatkowski, M. (2013). Feature-based generation of machining process plans for optimised parts manufacture. Journal of Intelligent Manufacturing, 24, 831–846.

    Article  Google Scholar 

  • Delligatti, L. (2010). SysML distilled: A brief guide to the systems modeling language. London: Pearson Education.

    Google Scholar 

  • DIN 8593–0 (2003). Fertigungsverfahren Fügen - Teil 0: Allgemeines, Einordnung, Unterteilung, Begriffe. Berlin: Beuth Verlag.

  • Draht, R. (2010). Datenaustausch in der Anlagenplanung mit AutomationML. Heidelberg: Springer.

    Book  Google Scholar 

  • Duda, R. O., Hart, P. E., & Stork, D. G. (2001). Pattern classification. New York: Wiley.

    Google Scholar 

  • Ehrmann, M., Schlick J., Seckner M., & Zühlke D. (2005). PRIMOS—a novel concept to program complex assembly processes. In Proceedings of the 2nd international conference on informatics in control, automation and robotics 2005 (ICINCO), Barcelona, Spain (pp. 107–112).

  • Essers, M. S., & Vaneker, T. H. J. (2013). Developing concepts for improved efficiency of robot work preparation. Procedia CIRP, 7, 515–520.

    Article  Google Scholar 

  • Freese, M., et al. (2010). Virtual robot experimentation platform v-rep: A versatile 3d robot simulator. In N. Ando, S. Balakirsky, T. Hemker, M. Reggiani, & O. von Stryk (Eds.), Simulation, modeling, and programming for autonomous robots (pp. 51–62). Berlin: Springer.

  • Frei, R., Ferreira, B., Di Marzo Serugendo, G., & Barata, J. (2009). An architecture for self-managing evolvable assembly systems. In IEEE international conference on systems, man and cybernetics (SMC) (pp. 2707–2712).

  • Gao, J., et al. (2011). Service-oriented manufacturing: A new product pattern and manufacturing paradigm. Journal of Intelligent Manufacturing, 22(3), 435–446.

    Article  Google Scholar 

  • Gerber, T., et al. (2013). Towards a seamless integration between process modeling descriptions at business and production levels: work in progress. Journal of Intelligent Manufacturing, 24, 1089–1099.

    Google Scholar 

  • Gps, G. f. P. G. (2014). SMErobotics—the European robotics initiative for strengthening the competitiveness of SMEs in manufacturing by integrating aspects of cognitive systems. http://www.smerobotics.org. Accessed 25 June 2014.

  • Güttel, K., Weber, P., & Fay, A. (2008). Automatic generation of PLC code beyond the nominal sequence. In Proceedings of ETFA’08 (pp. 1277–1284).

  • Humburger, R. (1997). Konzeption eines Systems zur aufgabenorientierten Roboterprogrammierung. Ph.D. dissertation, RWTH Aachen. Aachen: Shaker Verlag.

  • IFR World Robotics (2011). Industrial Robots.

  • John, K. H., & Tiegelkamp, M. (2010). IEC 61131–3: Programming industrial automation systems—concepts and programming languages, requirements for programming systems, decision-making aids. Berlin: Springer.

    Google Scholar 

  • Kalev, D., & Schmuller, J. (1999). The ANSI/ISO C++ professional programmer’s handbook. Que Corp.

  • Keddis, N., Kainz, G., Buckl, C., & Knoll, A. (2013). Towards adaptable manufacturing systems. In IEEE international conference on industrial technology (ICIT), South Africa (pp. 1410–1415).

  • Kleineidam, G. (1990). CAD/CAP: Computerbasierte Montagefeinplanung. Ph.D. dissertation, Universität Erlangen - Nürnberg, Reihe Fertigungstechnik - Erlangen, Vol. 12; München, Wien: Hanser Verlag.

  • Kluge, S. (2011). Methodik zur fähigkeitsbasierten Planung modularer Montagesysteme. Ph.D. dissertation Universität Stuttgart.

  • Kyoung-Dae, K. & Kumar, P. R. (2012). Cyber-physical systems: A perspective at the centennial. Proceedings of the IEEE 100. Special Centennial Issue (pp. 1287–1308).

  • Legat, C., et al. (2013). Automatic generation of field control strategies for supporting (re-)engineering of manufacturing systems. Journal of Intelligent Manufacturing, 25, 1101–1111.

    Article  Google Scholar 

  • Liu, M., et al. (2014). Intelligent assembly system for mechanical products and keytechnology based on internet of things. Journal of Intelligent Manufacturing, 25, 1–29.

    Article  Google Scholar 

  • Lukman T., Godena G., Gray J., & Strmcnik S. (2010). Model-driven engineering of industrial process control applications. In 15th IEEE international conference on emerging technologies and factory automation (ETFA), Bilbao, Spain (pp. 1–8).

  • Malec, J., Nilsson, A., Nilsson, K., & Nowaczyk, S. (2007). Knowledge-based reconfiguration of automation systems. In Proceedings of the 3rd annual IEEE conference on automation science and engineering, Scottsdale, USA (pp. 170–174).

  • Nagai, T., Aramaki, S., & Nagasawa, I. (2007). Representation and programming for a robotic assembly task using an assembly structure. In 7th IEEE international conference on computer and information technology, Japan (pp. 909–914).

  • Naumann, M., Bengel, M., & Verl, A. (2010). Automatic generation of robot applications using a knowledge integration framework. In Proceedings for the joint conference of ISR 2010, 41st international symposium on robotics (pp. 631–638). Berlin: VDE-Verlag.

  • Naumann, M., Wegener, K., & Schraft, K. (2007). Control architecture for robot cells to enable plug’n’produce. In Hutchinson, S. (Ed.), IEEE international conference on robotics and automation (ICRA 2007), Rom, Italy (pp. 287–292).

  • OPAK Projekt (2014). http://www.opak-projekt.de/. Accessed 25 June 2014.

  • Ostgahte, M. (2012). System zur produktbasierten Steuerung von Abläufen in der auftragsbezogenen Fertigung und Montage, PhD dissertation Technische Universität München, München: Utz Verlag.

  • Park, H. S., Anh, D. B. H., & Lee, G. B. (2008). Development for automatic control system. In Proceedings of the third international forum on strategic technologies (IFOST 2008), Novosibirsk, Russia (pp. 421–424).

  • PLCopen TC6 (2014). XML Formats for IEC 61131–3 Version 2.01. http://www.plcopen.org/pages/tc6_xml/ [25.06.2014]

  • Pratt, M. J. (2001). Introduction to ISO 10303–the STEP standard for product data exchange. Journal of Computing and Information Science in Engineering, 1(1), 102–103.

    Article  Google Scholar 

  • Prommer, J., Schleipen, M., & Beyerer, J. (2013). PPRS: Production skills and their relation to product, process, and resource. In Proceedings of the 18th IEEE conference on emerging technologies and factory automation ETFA (pp. 1–4).

  • Reinhart, G., & Krug, S. (2010). Current state model for easy reconfiguration of robot systems and offline-programming-environments. In ITG, VDMA, IFR, DGR (Eds.) Proceedings for the joint conference of ISR 2010 and ROBOTIK 2010, München, 2010. Berlin: VDE-Verlag.

  • Reinhart, G., Hüttner, S., & Krug, S. (2011). Automatic configuration of robot systems—upward and downward integration. In S. Jeschke, H. Liu, & D. Schilberg (Eds.), Intelligent robotics and applications (pp. 102–111). New York: Springer.

    Chapter  Google Scholar 

  • Rozenblit, J. W., & Jacak, W. (1991). Simulation-based planning of robot tasks in flexible manufacturing. In Proceedings of the second annual conference on AI, simulation and planning in high autonomy systems, Cocoa Beach, USA (pp. 166–173).

  • Sauter, T., et al. (2001). The evolution of factory and building automation. IEEE Industrial Electronics Magazine, 5(3), 35–48.

    Article  Google Scholar 

  • Schmidt, M. (1992). Konzeption und Einsatzplanung flexibel automatisierter Montagesysteme. Ph.D. dissertation Technische Universität München, München: Utz.

  • Seckner, M. (2008). Unterstützung automatisierter Mikroproduktion durch wandlungsfähige Montageanlagen, Ph.D. dissertation, Technische Universität Kaiserslautern.

  • Selig, A. (2011). Informationsmodell zur funktionalen Typisierung von Automatisierungsgeräten. Ph.D. dissertation, Fraunhofer IPA, Heimsheim: Jost-Jetter.

  • VDI 2860 (1990). Montage und Handhabungstechnik, Handhabungsfunktionen, Handhabungseinrichtungen, Begriffe, Definitionen, Symbole. VDI-Gesellschaft Produktionstechnik.

  • Vogel-Heuser, B. (2014). Herausforderungen und Anforderungen aus Sicht der IT und der Automatisierungstechnik. Industrie 4.0 in Produktion, Automatisierung und Logistik. Springer Fachmedien Wiesbaden, pp. 37–48.

  • Voß, V. (2013). Wiederverwendbare Simulationsmodelle für die domänen- und disziplinübergreifende Produktentwicklung. Ph.D. dissertation, Universität Stuttgart.

  • Wagener, A., et al. (2002). PDML-A XML-based process description language. In Proceedings of the 9th European concurrent engineering conference, Modena.

  • Wuest, T., Irgens, C., & Thoben, K.-D. (2014). An approach to monitoring quality in manufacturing using supervised machine learning on product state data. Journal of Intelligent Manufacturing, 25(5), 1167–1180.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Backhaus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Backhaus, J., Reinhart, G. Digital description of products, processes and resources for task-oriented programming of assembly systems. J Intell Manuf 28, 1787–1800 (2017). https://doi.org/10.1007/s10845-015-1063-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-015-1063-3

Keywords

Navigation