Skip to main content

Advertisement

Log in

Intelligent fault diagnosis of rolling element bearings using sparse wavelet energy based on overcomplete DWT and basis pursuit

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

This paper explores sparse time-frequency distribution (TFD) using overcomplete discrete wavelet transform (DWT) and sparse representation techniques. This distribution is discovered for characterizing the periodic transient information embedded in rolling element bearings and extracting effective features that can discriminate different fault conditions. Based on the sparse TFD, a new sparse wavelet energy (SWE) feature is obtained by three main steps: first, an overcomplete discrete DWT is employed to decompose the fault signal and construct a redundant dictionary; second, the redundant dictionary is optimized by basis pursuit to obtain the sparsest TFD; finally, SWE is calculated from the new TFD to produce a feature vector for each signal. SWE features that combine the merits of overcomplete DWT and sparse representation techniques can precisely reveal fault-induced information, thereby exhibiting valuable properties for automatic fault identification by intelligent classifiers. The effectiveness and advantages of the proposed features are confirmed by simulation and the practical fault pattern recognition of rolling bearings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Afonso, M. V., Bioucas-Dias, J. M., & Figueiredo, M. A. T. (2010). Fast image recovery using variable splitting and constrained optimization. IEEE Transactions on Image Processing, 19(9), 2345–2356.

    Article  Google Scholar 

  • Bahmani, S., Raj, B., & Boufounos, P. T. (2013). Greedy sparsity-constrained optimization. Journal of Machine Learning Research, 14, 807–841.

    Google Scholar 

  • Baydar, N., & Ball, A. (2001). A comparative study of acoustic and vibration signals in detection of gear failures using wigner–ville distribution. Mechanical System and Signal Processing, 15(6), 1091–1107.

    Article  Google Scholar 

  • Beygi, S., Kafashan, M., Bahrami, H. R., & Mugler, D. H. (2012). The iterative shrinkage method for impulsive noise reduction from images. Measurement Science and Technology, 23(11), 114009.

    Article  Google Scholar 

  • Bokoski, P., & Juricic, D. (2012). Fault detection of mechanical drives under variable operating conditions based on wavelet packet renyi entropy signatures. Mechanical Systems and Signal Processing, 31, 369–381.

    Article  Google Scholar 

  • Chen, S. S. B., Donoho, D. L., & Saunders, M. A. (1998). Atomic decomposition by basis pursuit. SIAM Journal on Scientific Computing, 20(1), 33–61.

    Article  Google Scholar 

  • Chen, S. S. B., Donoho, D. L., & Saunders, M. A. (2001). Atomic decomposition by basis pursuit. SIAM Review, 43(1), 129–159.

    Article  Google Scholar 

  • Chui, C. K., & He, W. J. (2000). Compactly supported tight frames associated with refinable functions. Applied and Computational Harmonic Analysis, 8(3), 293–319.

    Article  Google Scholar 

  • Donoho, D. L. (2006). For most large underdetermined systems of linear equations the minimal l(1)-norm solution is also the sparsest solution. Communications on Pure and Applied Mathematics, 59(6), 797–829.

    Article  Google Scholar 

  • Donoho, D. L., & Huo, X. M. (2001). Uncertainty principles and ideal atomic decomposition. IEEE Transactions on Information Theory, 47(7), 2845–2862.

    Article  Google Scholar 

  • Feng, Z. P., & Chu, F. L. (2007). Application of atomic decomposition to gear damage detection. Journal of Sound and Vibration, 302(1–2), 138–151.

    Article  Google Scholar 

  • Gharavian, M. H., Ganj, F. A., Ohadi, A. R., & Bafroui, H. H. (2013). Comparison of fda-based and pca-based features in fault diagnosis of automobile gearboxes. Neurocomputing, 121, 150–159.

  • Grbovic, M., Li, W. C., Xu, P., Usadi, A. K., Song, L. M., & Vucetic, S. (2012). Decentralized fault detection and diagnosis via sparse pca based decomposition and maximum entropy decision fusion. Journal of Process Control, 22(4), 738–750.

    Article  Google Scholar 

  • Gunn, R. N., Gunn, S. R., Turkheimer, F. E., Aston, J. A. D., & Cunningham, T. J. (2002). Positron emission tomography compartmental models: A basis pursuit strategy for kinetic modeling. Journal of Cerebral Blood Flow and Metabolism, 22(12), 1425–1439.

    Article  Google Scholar 

  • He, S. G., He, Z., & Wang, G. A. (2013). Online monitoring and fault identification of mean shifts in bivariate processes using decision tree learning techniques. Journal of Intelligent Manufacturing, 24(1), 25–34.

  • Hsu, C. W., & Lin, C. J. (2002). A comparison of methods for multi-class support vector machines. IEEE Transactions on Neural Networks, 13(2), 415–425.

  • Humberstone, M., Wood, B., & Henkel, J. (2012). Differentiating between expanded and fault conditions using principal component analysis. Journal of Intelligent Manufacturing, 23(2), 179–188.

    Article  Google Scholar 

  • Jiang, L., Xuan, J. P., & Shi, T. L. (2013). Feature extraction based on semi-supervised kernel marginal fisher analysis and its application in bearing fault diagnosis. Mechanical Systems and Signal Processing, 41(1–2), 113–126.

    Article  Google Scholar 

  • Klein, R., Ingman, D., & Braun, S. (2001). Non-stationary signals: Phase-energy approach theory and simulations. Mechanical System and Signal Processing, 15(6), 1061–1089.

    Article  Google Scholar 

  • Konar, P., & Chattopadhyay, P. (2011). Bearing fault detection of induction motor using wavelet and support vector machines (svms). Applied Soft Computing, 11(6), 4203–4211.

    Article  Google Scholar 

  • Kovacevic, J., & Chebira, A. (2007). Life beyond bases: The advent of frames (part II). IEEE Signal Processing Magazine, 24(5), 115–125.

    Article  Google Scholar 

  • Li, R., & Frogley, M. (2013). On-line fault detection in wind turbine transmission system using adaptive filter and robust statistical features. International Journal of Prognostics and Healthy Management Special issue on Wind Turbine PHM, 4(19), 120–129.

    Google Scholar 

  • Li, R. Y., Sopon, P., & He, D. (2012). Fault features extraction for bearing prognostics. Journal of Intelligent Manufacturing, 23(2), 313–321.

    Article  Google Scholar 

  • Lin, J., & Zuo, M. J. (2003). Gearbox fault diagnosis using adaptive wavelet filter. Mechanical Systems and Signal Processing, 17(6), 1259–1269.

    Article  Google Scholar 

  • Liu, B., Ling, S. F., & Gribonval, R. (2002). Bearing failure detection using matching pursuit. Ndt and E International, 35(4), 255–262.

    Article  Google Scholar 

  • Lorena, A. C., & de Carvalho, A. C. P. L. F. (2008). Evolutionary tuning of SVM parameter values in multiclass problems. Neurocomputing, 71, 3326–3334.

    Article  Google Scholar 

  • Mallat, S., & Zhang, Z. (1993). Matching pursuit with timefrequency dictionaries. IEEE Transactions on Signal Processing, 41(12), 3397–3415.

    Article  Google Scholar 

  • Marjanovic, G., & Solo, V. (2012). On l(q) optimization and matrix completion. IEEE Transactions on Signal Processing, 60(11), 5714–5724.

    Article  Google Scholar 

  • Mateos, G., Bazerque, J. A., & Giannakis, G. B. (2010). Distributed sparse linear regression. IEEE Transactions on Signal Processing, 58(10), 5262–5276.

    Article  Google Scholar 

  • Michailovich, O. V. (2011). An iterative shrinkage approach to total-variation image restoration. IEEE Transactions on Image Processing, 20(5), 1281–1299.

    Article  Google Scholar 

  • Mori, K., Kasashima, N., Yoshioka, T., & Ueno, Y. (1996). Prediction of spalling on a ball bearing by applying the discrete wavelet transform to vibration signals. Wear, 195(1–2), 162–168.

    Article  Google Scholar 

  • Mortada, M. A., Yacout, S., & Lakis, A. (2014). Fault diagnosis in power transformers using multi-class logical analysis of data. Journal of Intelligent Manufacturing, 25(6), 1429–1439.

    Article  Google Scholar 

  • Pandya, D. H., Upadhyay, S. H., & Harsha, S. P. (2014). Fault diagnosis of rolling element bearing by using multinomial logistic regression and wavelet packet transform. Soft Computing, 18(2), 255–266.

    Article  Google Scholar 

  • Peng, Z. K., Tse, P. W., & Chu, F. L. (2005). A comparison study of improved hilbert-huang transform and wavelet transform: Application to fault diagnosis for rolling bearing. Mechanical Systems and Signal Processing, 19(5), 974–988.

    Article  Google Scholar 

  • Plumbley, M. D., Abdallah, S. A., Blumensath, T., & Davies, M. E. (2006). Sparse representations of polyphonic music. Signal Processing, 86(3), 417–431.

    Article  Google Scholar 

  • Rai, V. K., & Mohanty, A. R. (2007). Bearing fault diagnosis using FFT of intrinsic mode functions in hilbert-huang transform. Mechanical Systems and Signal Processing, 21(6), 2607–2615.

    Article  Google Scholar 

  • Rajpoot, K., Rajpoot, N., & Noble, J. A. (2008). Discrete wavelet diffusion for image denoising. Image and Signal Processing, 5099, 20–28.

    Article  Google Scholar 

  • Rusu, C., & Dumitrescu, B. (2012). Stagewise k-svd to design efficient dictionaries for sparse representations. IEEE Signal Processing Letters, 19(10), 631–634.

    Article  Google Scholar 

  • Selesnick, I. W. (2011). Wavelet transform with tunable q-factor. IEEE Transactions on Signal Processing, 59(8), 3560–3575.

    Article  Google Scholar 

  • Shao, R. P., Hu, W. T., Wang, Y. Y., & Qi, X. K. (2014). The fault feature extraction and classification of gear using principal component analysis and kernel principal component analysis based on the wavelet packet transform. Measurement, 54, 118–132.

    Article  Google Scholar 

  • Wang, G. F., & Cui, Y. H. (2013). On line tool wear monitoring based on auto associative neural network. Journal of Intelligent Manufacturing, 24(6), 1085–1094.

    Article  Google Scholar 

  • Wang, S. B., Huang, W. G., & Zhu, Z. K. (2011). Transient modeling and parameter identification based on wavelet and correlation filtering for rotating machine fault diagnosis. Mechanical Systems and Signal Processing, 25(4), 1299–1320.

    Article  Google Scholar 

  • Wells, L. J., Megahed, F. M., Niziolek, C. B., Camelio, J. A., & Woodall, W. H. (2013). Statistical process monitoring approach for high-density point clouds. Journal of Intelligent Manufacturing, 24(6), 1267–1279.

  • Yang, H. Y., Mathew, J., & Ma, L. (2005). Fault diagnosis of rolling element bearings using basis pursuit. Mechanical Systems and Signal Processing, 19(2), 341–356.

    Article  Google Scholar 

  • Yu, H. C., Lin, K. Y., & Chien, C. F. (2014). Hierarchical indices to detect equipment condition changes with high dimensional data for semiconductor manufacturing. Journal of Intelligent Manufacturing, 25(5), 933–943.

    Article  Google Scholar 

  • Zhang, X. H., Deng, Z. H., Liu, W., & Cao, H. (2013). Combining rough set and case based reasoning for process conditions selection in camshaft grinding. Journal of Intelligent Manufacturing, 24(2), 211–224.

    Article  Google Scholar 

  • Zhang, Z. Y., Wang, Y., & Wang, K. S. (2013). Fault diagnosis and prognosis using wavelet packet decomposition, fourier transform and artificial neural network. Journal of Intelligent Manufacturing, 24(6), 1213–1227.

    Article  Google Scholar 

  • Zhao, D. L., Ma, W., & Liang, W. K. (2005). On data fusion fault diagnosis and simulation of hydroelectric units vibration. Proceedings of the CSEE, 25(20), 137–42.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key Basic Research Program of China (973 Program) under Grant No. 2014CB049500 and the Key Technologies R&D Program of Anhui Province under Grant No. 1301021005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Gan, M. & Zhu, C. Intelligent fault diagnosis of rolling element bearings using sparse wavelet energy based on overcomplete DWT and basis pursuit. J Intell Manuf 28, 1377–1391 (2017). https://doi.org/10.1007/s10845-015-1056-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-015-1056-2

Keywords

Navigation