Ahuja, R. K., Magnati, T. L., & Orlin, J. B. (1993). Network flows: Theory, algorithms and applications. Upper Saddle River, NJ: Prentice Hall.
Google Scholar
Álvarez Pérez, G. A., González-Velarde, J. L., & Fowler, J. W. (2009). Crossdocking—Just in time scheduling: An alternative solution approach. Journal of the Operational Research Society, 60(4), 554–564.
Article
Google Scholar
Apte, U. M., & Viswanathan, S. (2000). Effective cross docking for improving distribution efficiencies. International Journal of Logistics Research and Applications, 3(3), 291–302.
Article
Google Scholar
Baud-Lavigne, B., Bassetto, S., & Agard, B. (2014). A method for a robust optimization of joint product and supply chain design. Journal of Intelligent Manufacturing. doi:10.1007/s10845-014-0908-5.
Boloori Arabani, A., Fatemi Ghomi, S. M. T., & Zandieh, M. (2011). Meta-heuristics implementation for scheduling of trucks in a cross-docking system with temporary storage. Expert Systems with Applications, 38(3), 1964–1979.
Article
Google Scholar
Boysen, N. (2010). Truck scheduling at zero-inventory cross docking terminals. Computers & Operations Research, 37(1), 32–41.
Article
Google Scholar
Boysen, N., & Fliedner, M. (2010). Cross dock scheduling: Classification, literature review and research agenda. Omega, 38(6), 413–422.
Article
Google Scholar
Bozer, Y. A., & Carlo, H. J. (2008). Optimizing inbound and outbound door assignments in less-than-truckload crossdocks. IIE Transactions, 40(11), 1007–1018.
Article
Google Scholar
Chmielewski, A., Naujoks, B., Janas, M., & Clausen, U. (2009). Optimizing the door assignment in LTL-terminals. Transportation Science, 43(2), 198–210.
Article
Google Scholar
Eracar, Y. A., & Kokar, M. M. (2014). Using UML and OCL for representing multiobjective combinatorial optimization problems. Journal of Intelligent Manufacturing, 25(3), 555–569.
Article
Google Scholar
Fazel Zarandi, M. H., Khorshidian, H., & Shirazi. M. A. (2014). A constraint programming model for the scheduling of JIT cross-docking systems with preemption. Journal of Intelligent Manufacturing. doi:10.1007/s10845-013-0860-9.
Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: A guide to the theory of NP-completeness. New York: WH Freeman.
Glover, F. (1986). Future paths for integer programming and links to artificial intelligence. Computers & Operations Research, 13(5), 533–549.
Article
Google Scholar
Golias, M. M., Ivey, S., Haralambides, H. E., & Saharidis, G. K. D. (2010). Maximizing throughput and minimizing tardiness and earliness at a cross dock facility: Biobjective formulation. Transportation Research Board 89th Annual Meeting (pp. 1–14). Washington DC.
Gu, J., Goetschalckx, M., & McGinnis, L. F. (2007). Research on warehouse operation: A comprehensive review. European Journal of Operational Research, 177(1), 1–21.
Article
Google Scholar
Gue, K. R. (1999). The effects of trailer scheduling on the layout of freight terminals. Transportation Science, 33(4), 419–428.
Article
Google Scholar
Hung, T. C., & Chan, K. Y. (2013). Uncertainty quantifications of Pareto optima in multiobjective problems. Journal of Intelligent Manufacturing, 24(2), 385–395.
Article
Google Scholar
Kristianto, Y., Helo, P., & Jiao, R. J. (2013). Mass customization design of engineer-to-order products using Benders’ decomposition and bi-level stochastic programming. Journal of Intelligent Manufacturing, 24(5), 961–975.
Article
Google Scholar
Larbi, R., Alpan, G., Baptiste, P., & Penz, B. (2011). Scheduling cross docking operations under full, partial and no information on inbound arrivals. Computers & Operations Research, 38(6), 889–900.
Article
Google Scholar
Li, Y., Lim, A., & Rodrigues, B. (2004). Crossdocking—JIT scheduling with time windows. Journal of the Operational Research Society, 55(12), 1342–1351.
Article
Google Scholar
Lim, A., Ma, H., & Miao, Z. (2006a). Truck dock assignment problem with operational time constraint within crossdocks. In M. Ali & R. Dapoigny (Eds.), Advances in applied artificial intelligence, lecture notes in computer science, (Vol. 4031, pp. 262–271). Berlin, Heidelberg: Springer.
Lim, A., Ma, H., & Miao, Z. (2006b). Truck dock assignment problem with time windows and capacity constraint in transshipment network through crossdocks. In M. Gavrilova, O. Gervasi, V. Kumar, C. Tan, D. Taniar, A. Laganá, Y. Mun, & H. Choo (Eds.), Computational science and applications, lecture notes in computer science (Vol. 3982, pp. 688–697)., Berlin, Heidelberg: Springer.
McWilliams, D. L., Stanfield, P. M., & Geiger, C. D. (2005). The parcel hub scheduling problem: A simulation-based solution approach. Computers & Industrial Engineering, 49(3), 393–412.
Article
Google Scholar
McWilliams, D. L., Stanfield, P. M., & Geiger, C. D. (2008). Minimizing the completion time of the transfer operations in a central parcel consolidation terminal with unequal-batch-size inbound trailers. Computers & Industrial Engineering, 54(4), 709–720.
McWilliams, D. L. (2009a). A dynamic load-balancing scheme for the parcel hub-scheduling problem. Computers & Industrial Engineering, 57(3), 958–962.
McWilliams, D. L. (2009b). Genetic-based scheduling to solve the parcel hub scheduling problem. Computers & Industrial Engineering, 56(4), 1607–1616.
Article
Google Scholar
Miao, Z., Lim, A., & Ma, H. (2009). Truck dock assignment problem with operational time constraint within crossdocks. European Journal of Operational Research, 192(1), 105–115.
Article
Google Scholar
Napolitano, M. (2000). Making the move to cross docking: A practical guide to planning, designing and implementing a cross dock operation. Oak Brook: Warehousing Education & Research Council.
Rebai, M., Kacem, I., & Adjallah, K. H. (2012). Earlinesstardiness minimization on a single machine to schedule preventive maintenance tasks: Metaheuristic and exact methods. Journal of Intelligent Manufacturing, 23(4), 1207–1224.
Article
Google Scholar
Rosales, C. R., Fry, M. J., & Radhakrishnan, R. (2009). Transfreight reduces costs and balances workload at Georgetown crossdock. Interfaces, 39(4), 316–328.
Article
Google Scholar
Sadykov, R. (2012). Scheduling incoming and outgoing trucks at cross docking terminals to minimize the storage cost. Annals of Operations Research, 201(1), 423–440.
Article
Google Scholar
Sauvey, C., & Sauer, N. (2012). A genetic algorithm with genes-association recognition for flowshop scheduling problems. Journal of Intelligent Manufacturing, 23(4), 1167–1177.
Article
Google Scholar
Tsui, L. Y., & Chang, C. H. (1990). A microcomputer based decision support tool for assigning dock doors in freight yards. Computers & Industrial Engineering, 19(1–4), 309–312.
Article
Google Scholar
Vahdani, B., & Zandieh, M. (2010). Scheduling trucks in cross-docking systems: Robust meta-heuristics. Computers & Industrial Engineering, 58(1), 12–24.
Article
Google Scholar
Van Belle, J., Valckenaers, P., & Cattrysse, D. (2012). Cross-docking: State of the art. Omega, 40(6), 827–846.
Article
Google Scholar
Vis, I. F. A., & Roodbergen, K. J. (2008). Positioning of goods in a cross-docking environment. Computers & Industrial Engineering, 54(3), 677–689.
Article
Google Scholar
Vogt, J. J. (2010). The successful cross-dock based supply chain. Journal of Business Logistics, 31(1), 99–119.
Article
Google Scholar
Werners, B., & Wülfing, T. (2010). Robust optimization of internal transports at a parcel sorting center operated by Deutsche Post World Net. European Journal of Operational Research, 201(2), 419–426.
Article
Google Scholar
Yu, V. F., Sharma, D., & Murty, K. G. (2008). Door allocations to origins and destinations at less-than-truckload trucking terminals. Journal of Industrial and Systems Engineering, 2(1), 1–15.
Google Scholar
Zhu, Y. R., Hahn, P. M., Liu, Y., Guignard, M. (2009). New approach for the cross-dock door assignment problem. In XLI Brazilian Symposium on Operations Research. Porto Seguro, Brazil.