Journal of Intelligent Manufacturing

, Volume 27, Issue 1, pp 83–99 | Cite as

The ALTER-NATIVA knowledge management approach

  • Joao Sarraipa
  • Catarina Marques-Lucena
  • Silvia Baldiris
  • Ramón Fabregat
  • Silvana Aciar
Article

Abstract

Nowadays, it is commonly known that information systems need an agile capability of handling knowledge. To accomplish this, systems have to have a formal knowledge representation ability supported by specific and advanced reasoning features. This research work proposes a knowledge management approach with the purpose to gather, model and consume community knowledge for specific recommendation commitments. Such approach is accomplished by a semantic lexicon alignment between the various community knowledge assets, to facilitate collaborations establishment between people and systems in an interoperable fashion. Thus, a knowledge base supported by a thesaurus able to represent all the metadata needed to represent and characterize the various community stakeholders’ resources is proposed. The thesaurus represents the lexicon in the domain, which in the ALTER-NATIVA systems is mostly used to support the various e-Learning elements (e.g. courses) and users categorization, sustained by synchronization features to facilitate a constant update of its information. A set of services designed to recommend specific resources in relation to a determined profile of user is provided. Additionally, a discussion about how the ALTER-NATIVA knowledge management approach can be applied to industrial environments is presented.

Keywords

Knowledge management E-learning Ontologies 

References

  1. ATutor. (2013). ATutor: Learning management system. Retrieved from the web at November 2013: http://atutor.ca/atutor.
  2. Baldiris, S., Avila, C., Rivera, P. A., Guevara, J. C., & Fabregat, R. (2011). Web editing module for tagging metadata of the Fedora Commons repository learning objects under DRD and LOM standards. In 2012 Frontiers in education conference proceedings (Vol. 0, pp. S2E–1–S2E–5). doi:10.1109/FIE.2011.6142750.
  3. Bhattacharya, A., Tiwari, M. K., & Harding, J. A. (2010). A framework for ontology based decision support system for e-learning modules, business modeling and manufacturing systems. Journal of Intelligent Manufacturing, 23(5), 1763–1781. doi:10.1007/s10845-010-0480-6.CrossRefGoogle Scholar
  4. Camarinha-Matos, L. M., & Afsarmanesh, H. (2007). A comprehensive modeling framework for collaborative networked organizations. Journal of Intelligent Manufacturing, 18(5), 529–542. doi:10.1007/s10845-007-0063-3.CrossRefGoogle Scholar
  5. Chawhan, A. K. (2012). Knowledge management and e-learning. In eCommunications—CSI Communications-Knowledge Digest for IT Community; ISSN 0970–0647X; Vol. 36; Issue 3; June 2012.Google Scholar
  6. Chu, M. T., Khosla, R., & Nishida, T. (2010). Communities of practice model driven knowledge management in multinational knowledge based enterprises. Journal of Intelligent Manufacturing, 23(5), 1707–1720. doi:10.1007/s10845-010-0472-6.CrossRefGoogle Scholar
  7. Costa, R., Lima, C., Sarraipa, J., & Jardim-Gonçalves, R. (2013). Facilitating knowledge sharing and reuse in building and construction domain: An ontology-based approach. Journal of Intelligent Manufacturing. doi:10.1007/s10845-013-0856-5.
  8. European Commision. (2012). Development and cooperation—EUROPEAID. Retrieved at October 17, 2013, from http://ec.europa.eu/europeaid/where/latin-america/regional-cooperation/alfa/publications_en.htm.
  9. Guarino, N., & Giaretta, P. (1995). Ontologies and knowledge bases: Towards a terminological clarification. Towards Very Large Knowledge Bases: Knowledge Building and Knowledge Sharing, 25–32. Retrieved from the web at October 2013: http://www.csee.umbc.edu/771/papers/KBKS95.pdf.Z.
  10. IEEE. (2002). Draft standard for learning object metadata. Retrieved from web at October 2013: http://ltsc.ieee.org/wg12/files/LOM_1484_12_1_v1_Final_Draft.pdf.
  11. IMAGINE Consortium. (2013). IMAGINE—Innovative end-to-end Management of Dynamic Manufacturing Networks. Available in the web at December 2013: http://www.imagine-futurefactory.eu.
  12. Impact International. (2013). Diversity & Inclusion. Retrieved from the web at December 2013: http://www.impactinternational.com/diversity-inclusion.
  13. Jardim-Goncalves, R., Sarraipa, J., Agostinho, C., & Panetto, H. (2011). Knowledge framework for intelligent manufacturing systems. Journal of Intelligent Manufacturing, 22(5), 725–735. doi:10.1007/s10845-009-0332-4.CrossRefGoogle Scholar
  14. Karayel, D., Sancak, S., & Keles, R. (2004). General framework for distributed knowledge management in mechatronic systems. Journal of Intelligent Manufacturing, 15(4), 511–515. Retrieved from http://dblp.uni-trier.de/db/journals/jim/jim15.html.
  15. Maedche, A., & Staab, S. (2001). Ontology learning for the semantic web. IEEE Intelligent Systems, 16(2), 72–79. doi:10.1109/5254.920602.CrossRefGoogle Scholar
  16. Maló, P., Sarraipa, J., Jardim-Gonçalves, R., & Steiger-Garção, A. (2008). The CoSpaces training system. In ICE2008 conference proceedings—14th international conference on concurrent enterprise, 23–25 Jun 2008, Lisbon, Portugal.Google Scholar
  17. May, M. (2002). Business process management: Strategic integration in a web-enabled environment (Management Briefings Executive Series). Financial Times Management. Retrieved from http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0273661086.
  18. Natlib. (2004). Digital resource description (DRD) application profile. Retrieved from the web at October 2013: http://archive.today/fdzIa.
  19. Nielson, B. (2009). Relevance of learning versus relevance of training and development; http://ezinearticles.com/?Relevance-of-Learning-Versus-Relevance-of-Training-and-Development&id=2255045.
  20. Noy, N. F., Sintek, M., Decker, S., Crubézy, M., Fergerson, R. W., & Musen, M. A. (2000). Creating semantic web contents with protégé-2000. IEEE Intelligent Systems, 16(2), 60–71. doi:10.1109/5254.920601.
  21. O’Leary, D. E. (1998). Using AI in knowledge management: Knowledge bases and ontologies. Intelligent Systems and their Applications, IEEE, 13(3), 34–39. doi:10.1109/5254.683180.
  22. Rhoads, E. (2002). Knowledge management and e-learning are two sides of the same coin. Retrieved from the web at December 2013: http://www.academia.edu/3656488/KM_e_Learning_Elsa_Rhoads.
  23. Rolstadås, A. (2011). Experience from continuing education using e-learning. Journal of Intelligent Manufacturing, 24(3), 511–516. doi:10.1007/s10845-011-0542-4.CrossRefGoogle Scholar
  24. Roy, A., & Raymond, L. (2008). Meeting the training needs of SMEs: Is e-learning a solution? The Electronic Journal of e-Learning, 6(2), 89–98.Google Scholar
  25. Ruiz, J. G., Mintzer, M. J., & Leipzig, R. M. (2006). The impact of e-learning in medical education. Academic Medicine: Journal of the Association of American Medical Colleges, 81(3), 207–212. Retrieved from http://view.ncbi.nlm.nih.gov/pubmed/16501260.
  26. Sarraipa, J. (2012). PhD Thesis: Semantic adaptability for the systems interoperability. Faculdade de Ciências e Tecnologia, New University of Lisbon.Google Scholar
  27. Sarraipa, J., Baldiris, S., Fabregat, R., & Jardim-Goncalves, R. (2012). Knowledge representation in support of adaptable eLearning services for all. In Proceedings of the 4th international conference on software development for enhancing accessibility and fighting info-exclusion (DSAI 2012).Google Scholar
  28. Sarraipa, J., Jardim-Gonçalves, R., & Steiger-Garção, A. (2010). MENTOR: An enabler for interoperable intelligent systems. International Journal of General Systems, 39(5), 557–573. Retrieved from http://dblp.uni-trier.de/db/journals/ijgs/ijgs39.html#SarraipaJS10.
  29. Sarraipa, J., Malo, P., Patel, H., Pettitt, M., Hardiman, S., Banassino, M., Syllignakis, A., & Carter, M. (2009). D102—training strategy and plan. A CoSpaces project deliverable. 30th April 2009.Google Scholar
  30. Sarraipa, J., Gomes-de-Oliveira, P., Marques-Lucena, C., Jardim-Gonçalves R., & Silva, J. M. (2013). E-training development approach for enterprise knowledge evolution. In The ASME international mechanical engineering congress and exposition, IMECE 2013, held at November 15–21, 2013, San Diego, CA, USA.Google Scholar
  31. thefreedictionary.com. (2003). Taxis definition. Retrieved from the web at October 2013: http://www.thefreedictionary.com/taxis.
  32. TinyMCE. (2013). Accessibility with TinyMCE. Retrieved from the web at October 2013: http://www.tinymce.com/wiki.php/TinyMCE3x:Accessibility.
  33. UCSF. (2012). Chapter 12: Managing Diversity in the Workplace. Retrieved from the web at October 2013:  http://ucsfhr.ucsf.edu/index.php/pubs/hrguidearticle/chapter-12-managing-diversity-in-the-workplace/.
  34. University of Michigan EECS Department. (2013). A survey of cognitive and agent architectures. Retrieved from the web at December 2013: http://ai.eecs.umich.edu/cogarch0/common/prop/metaknow.html.
  35. Wikipedia.org. (2013). Taxonomy definition. Retrieved from the web at October 2013: http://en.wikipedia.org/wiki/Taxonomy.
  36. W3C. (2008). Web Content Accessibility Guidelines (WCAG) 2.0. Retrieved from web at December 2013: http://www.w3.org/TR/WCAG20/.

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Joao Sarraipa
    • 1
    • 2
  • Catarina Marques-Lucena
    • 1
    • 2
  • Silvia Baldiris
    • 3
  • Ramón Fabregat
    • 3
  • Silvana Aciar
    • 4
  1. 1.DEE/FCTUniversidade Nova de LisboaCaparicaPortugal
  2. 2.UNINOVA-GRIS, Centre of Technology and SystemsCaparicaPortugal
  3. 3.Institute of Informatics and Applications (IIiA)University of GironaGironaSpain
  4. 4.Universidade Nacional de San JuanSan JuanArgentina

Personalised recommendations