Advertisement

Journal of Intelligent Manufacturing

, Volume 26, Issue 6, pp 1247–1252 | Cite as

A process prediction model based on Cuckoo algorithm for abrasive waterjet machining

  • Azizah Mohamad
  • Azlan Mohd ZainEmail author
  • Nor Erne Nazira Bazin
  • Amirmudin Udin
Article

Abstract

Cuckoo is a new evolutionary algorithm which is inspired by lifestyle of bird family. This study proposes Cuckoo algorithm for prediction of the surface roughness of Abrasive Water Jet (AWJ). Several prediction models with different initial eggs were developed and analyzed to investigate the best predicted surface roughness value. The paired sample t-test was used to demonstrate the validity of the results. Throughout this study, it was evidence that the Cuckoo algorithm could improve machining performances of the AWJ. The result shows that the more initial eggs were considered, a much lower predicted value of surface roughness was obtained. When the initial eggs increase, the value of the best parameters become nearer to the goal point. It was found that Cuckoo algorithm is capable for giving an improved surface roughness as it outperformed the results of two established computational techniques, artificial neural network and support vector machine.

Keywords

Cuckoo algorithm Surface roughness Abrasive water jet Machining 

Notes

Acknowledgments

Special appreciation to reviewer(s) for useful advices and comments. The authors greatly acknowledge Soft Computing Research Group (SCRG), Research Management Centre (RMC) UTM and Ministry of Higher Education Malaysia (MOHE) for financial support through the Exploratory Research Grant Scheme (ERGS) No. R.J130000.7828.4L087

References

  1. Adnan, M. R. H. M., Sarkheyli, A., Zain, A. M., & Haron, H. (2013). Fuzzy logic for modeling machining process: A review. Artificial Intelligence Review, doi: 10.1007/s10462-012-9381-8.
  2. Al-Zubaidi, S., Ghani, J. A., & Haron, C. H. C., et al. (2013). Optimization of cutting conditions for end milling of Ti6Al4V alloy by using a Gravitational Search Algorithm (GSA). Meccanica, pp. 1–15.Google Scholar
  3. Benardos, P. G., & Vosniakos, G. C. (2003). Predicting surface roughness in machining: A review. International Journal of Machine Tools and Manufacture, 43(8), 833–844.CrossRefGoogle Scholar
  4. Çaydaş, U., & Hasçalık, A. (2008). A study on surface roughness in abrasive waterjet machining process using artificial neural networks and regression analysis method. Journal of Materials Processing Technology, 202(1), 574–582.CrossRefGoogle Scholar
  5. Çaydaş, U., & Ekici, S. (2012). Support vector machines models for surface roughness prediction in CNC turning of AISI 304 austenitic stainless steel. Journal of Intelligent Manufacturing, 23(3), 639–650.CrossRefGoogle Scholar
  6. Deris, A. M., Zain, A. M., & Sallehuddin, R. (2013). Hybrid GR-SVM for prediction of surface roughness in abrasive water jet machining. Meccanica, pp. 1–9.Google Scholar
  7. Ergur, H. S., & Oysal, Y. (2013). Estimation of cutting speed in abrasive water jet using an adaptive wavelet neural network. Journal of Intelligent Manufacturing, pp. 1–11.Google Scholar
  8. Farshidianfar, A., Saghafi, A., Kalami, S. M., & Saghafi, I. (2012). Active vibration isolation of machinery and sensitive equipment using H \(\infty \) control criterion and particle swarm optimization method. Meccanica, 47(2), 437–453.CrossRefzbMATHGoogle Scholar
  9. Johari, N. F., Zain, A. M., Mustaffa, N. H., & Udin, A. (2013). Firefly algorithm for optimization problem. Applied Mechanics and Materials, 421, 512–517.CrossRefGoogle Scholar
  10. Jung, J. Y. (2002). Manufacturing cost estimation for machined parts based on manufacturing features. Journal of Intelligent Manufacturing, 13(4), 227–238.CrossRefGoogle Scholar
  11. Kamaruzaman, A. F., Zain, A. M., Yusuf, S. M., & Udin, A. (2013). Levy flight algorithm for optimization problems-a literature review. Applied Mechanics and Materials, 421, 496–501.CrossRefGoogle Scholar
  12. Liu, P., Xu, J. H., & Fu, Y. C. (2011). Cutting force and its frequency spectrum characteristics in high speed milling of titanium alloy with a polycrystalline diamond tool. Journal of Zhejiang University Science A, 12(1), 56–62.CrossRefADSGoogle Scholar
  13. Markopoulos, A. P., Manolakos, D. E., & Vaxevanidis, N. M. (2008). Artificial neural network models for the prediction of surface roughness in electrical discharge machining. Journal of Intelligent Manufacturing, 19(3), 283–292.CrossRefGoogle Scholar
  14. Mohamad, A., Zain, A. M., Bazin, N. E. N., & Udin, A. (2013). Cuckoo search algorithm for optimization problems—a literature review. Applied Mechanics and Materials, 421, 502–506.CrossRefGoogle Scholar
  15. Mokhtar, A., & Xu, X. (2011). Machining precedence of 21/2D interacting features in a feature-based data model. Journal of Intelligent Manufacturing, 22(2), 145–161.CrossRefGoogle Scholar
  16. Moola, M. R., Gorin, A., & Hossein, K. A. (2012). Optimization of various cutting parameters on the surface roughness of the machinable glass ceramic with two flute square end mills of micro grain solid carbide. International Journal of Precision Engineering and Manufacturing, 13(9), 1549–1554.CrossRefGoogle Scholar
  17. Munawar, M., Chen, J. C. S., & Mufti, N. A. (2011). Investigation of cutting parameters effect for minimization of surface roughness in internal turning. International Journal of Precision Engineering and Manufacturing., 12(1), 121–127.CrossRefGoogle Scholar
  18. Raeisi, E., & Ziaei-Rad, S. (2012). The worst response of mistuned bladed disk system using neural network and genetic algorithm. Meccanica, doi: 10.1007/s11012-012-9607-5.
  19. Rajabioun, R. (2011). Cuckoo optimization algorithm. Applied Soft Computing, 11(8), 5508–5518.CrossRefGoogle Scholar
  20. Raju, K. V. M. K., Janardhana, G. R., & Kumar, P. N. (2011). Optimization of cutting conditions for surface roughness in CNC end milling. International Journal of Precision Engineering and Manufacturing., 12(3), 383–391.CrossRefGoogle Scholar
  21. Ridwan, F., Xu, X., & Liu, G. (2012). A framework for machining optimisation based on STEP-NC. Journal of Intelligent Manufacturing., 23(3), 423–441.CrossRefGoogle Scholar
  22. Salgado, D. R., Alonso, F. J., Cambero, I., & Marcelo, A. (2009). In-process surface roughness prediction system using cutting vibrations in turning. The International Journal of Advanced Manufacturing Technology, 43(1), 40–51.Google Scholar
  23. Sardashti, A., Daniali, H. M., & Varedi, S. M. (2013a). Optimal free-defect synthesis of four-bar linkage with joint clearance using PSO algorithm. Meccanica, doi: 10.1007/s11012-013-9699-6.
  24. Sarkheyli, A., Zain, A. M., & Sharif, S. (2013b). A multi-performance prediction model based on ANFIS and new modified-GA for machining processes. Journal of Intelligent Manufacturing, doi: 10.1007/s10845-013-0828-9.
  25. Selvan, M. C. P., & Raju, D. N. M. S. (2011). Selection of process parameters in abrasive waterjet cutting of copper. International Journal of Advanced Engineering Sciences and Technologies, 7(2), 254–257.Google Scholar
  26. Sharma, V. S., Dhiman, S., Sehgal, R., & Sharma, S. K. (2008). Estimation of cutting forces and surface roughness for hard turning using neural networks. Journal of Intelligent Manufacturing, 19(4), 473–483.CrossRefGoogle Scholar
  27. Xu, J. H., Zhang, S. Y., Tan, J. R., & Sa, R. N. (2013). Collisionless tool orientation smoothing above blade stream surface using NURBS envelope. Journal of Zhejiang University Science A, 14(3), 187–197.CrossRefGoogle Scholar
  28. Yang, X. S., & Deb, S. (2009). Cuckoo search via Lévy flights., In: Nature & biologically inspired computing, 2009. NaBIC 2009. World Congress on (pp. 210–214). IEEE.Google Scholar
  29. Yusup, N., Sarkheyli, A., Zain, A. M., Hashim, S. Z. M., & Ithnin, N. (2013). Estimation of optimal machining control parameters using artificial bee colony. Journal of Intelligent Manufacturing, pp. 1–10.Google Scholar
  30. Yusup, N., Zain, A. M., & Hashim, S. Z. M. (2012). Evolutionary techniques in optimizing machining parameters: Review and recent applications (2007–2011). Expert System with Applications, 39, 9909–9927.CrossRefGoogle Scholar
  31. Zain, A. M., Haron, H., & Sharif, S. (2010a). Application of GA to optimize cutting conditions for minimizing surface roughness in end milling machining process. Expert System with Applications, 37, 4650–4659.CrossRefGoogle Scholar
  32. Zain, A. M., Haron, H., & Sharif, S. (2010b). Prediction of surface roughness in the end milling machining using artificial neural network. Expert System with Applications, 37, 1755–1768.CrossRefGoogle Scholar
  33. Zain, A. M., Haron, H., & Sharif, S. (2010c). Simulated annealing to estimate the optimal cutting conditions for minimizing surface roughness in end milling Ti-6Al-4V. Machining Science and Technology, 14, 43–62.CrossRefGoogle Scholar
  34. Zain, A. M., Haron, H., & Sharif, S. (2011b). Integration of simulated annealing and genetic algorithm to estimate optimal solutions for minimising surface roughness in end milling Ti-6AL-4V. International Journal of Computer Integrated Manufacturing, 24, 574–592.CrossRefGoogle Scholar
  35. Zain, A. M., Haron, H., & Sharif, S. (2011a). Estimation of the minimum machining performance in the abrasive waterjet machining using integrated ANN-SA. Expert Systems with Applications, 38(7), 8316–8326.CrossRefGoogle Scholar
  36. Zain, A. M., Haron, H., & Sharif, S. (2011c). Genetic algorithm and simulated annealing to estimate optimal process parameters of the abrasive waterjet machining. Engineering with Computers, 27, 251–259.CrossRefGoogle Scholar
  37. Zain, A. M., Haron, H., & Sharif, S. (2012a). Integrated ANN-GA for estimating the minimum value for machining performance. International Journal of Production Research, 50(1), 191–213.CrossRefGoogle Scholar
  38. Zain, A. M., Haron, H., Qasem, S. N., & Sharif, S. (2012b). Regression and ANN models for estimating minimum value of machining performance. Applied Mathematical Modelling, 36(4), 1477–1492.CrossRefzbMATHGoogle Scholar
  39. Zainal, N., Zain, A. M., Radzi, N. H. M., & Udin, A. (2013). Glowworm swarm optimization (GSO) algorithm for optimization problems: A state-of-the-art review. Applied Mechanics and Materials, 421, 507–511.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Azizah Mohamad
    • 1
  • Azlan Mohd Zain
    • 1
    Email author
  • Nor Erne Nazira Bazin
    • 1
  • Amirmudin Udin
    • 2
  1. 1.Soft Computing Research Group, Faculty of ComputingUniversiti Teknologi Malaysia (UTM)SkudaiMalaysia
  2. 2.Faculty of EducationUniversiti Teknologi Malaysia (UTM)SkudaiMalaysia

Personalised recommendations