Journal of Intelligent Manufacturing

, Volume 26, Issue 6, pp 1201–1215 | Cite as

Swarm lexicographic goal programming for fuzzy open shop scheduling

  • Juan José Palacios
  • Inés González-RodríguezEmail author
  • Camino R. Vela
  • Jorge Puente


In this work we consider a multiobjective open shop scheduling problem with uncertain processing times and flexible due dates, both modelled using fuzzy sets. We adopt a goal programming model based on lexicographic multiobjective optimisation of both makespan and due-date satisfaction and propose a particle swarm algorithm to solve the resulting problem. We present experimental results which show that this multiobjective approach achieves as good results as single-objective algorithms for the objective with the highest priority, while greatly improving on the second objective.


Open shop scheduling Fuzzy processing times Flexible due dates Particle swarm optimisation Lexicographic goal programming 



We would like to thank the anonymous referees for their insightful and constructive comments. This research has been supported by the Spanish Government under research grants FEDER TIN2010-20976-C02-02 and MTM2010-16051 and by the Principality of Asturias (Spain) under grant Severo Ochoa BP13106.


  1. Alcaide, D., Rodriguez-Gonzalez, A., & Sicilia, J. (2006). A heuristic approach to minimize expected makespan in open shops subject to stochastic processing times and failures. International Journal of Flexible Manufacturing Systems, 17, 201–226.CrossRefzbMATHGoogle Scholar
  2. Andresen, M., Bräsel, H., Mörig, M., Tusch, J., Werner, F., & Willenius, P. (2008). Simulated annealing and genetic algorithms for minimizing mean flow time in an open shop. Mathematical and Computer Modelling, 48, 1279–1293.MathSciNetCrossRefzbMATHGoogle Scholar
  3. Bellman, R. E., & Zadeh, L. A. (1970). Decision-making in a fuzzy environment. Management Science, 17(4), 141–164.MathSciNetCrossRefGoogle Scholar
  4. Belmecheri, F., Prins, C., & Yalaoui, F. L. A. (2013). Particle swarm optimization algorithm for a vehicle routing problem with heterogeneous fleet, mixed backhauls, and time windows. Journal of Intelligent Manufacturing, 24(4), 775–789.CrossRefGoogle Scholar
  5. Blum, C. (2005). Beam-ACO—hybridizing ant colony optimization with beam search: An application to open shop scheduling. Computers & Operations Research, 32(6), 1565–1591.CrossRefGoogle Scholar
  6. Bouveret, S., & Lemaître, M. (2009). Computing leximin-optimal solutions in constraint networks. Artificial Intelligence, 173, 343–364.Google Scholar
  7. Brucker, P., Hunrink, J., Jurisch, B., & Wöstmann, B. (1997). A branch & bound algorithm for the open-shop problem. Discrete Applied Mathematics, 76, 43–59.MathSciNetCrossRefzbMATHGoogle Scholar
  8. Celano, G., Costa, A., & Fichera, S. (2003). An evolutionary algorithm for pure fuzzy flowshop scheduling problems. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 11, 655–669.MathSciNetCrossRefzbMATHGoogle Scholar
  9. Chen, S. M., & Chang, T. H. (2001). Finding multiple possible critical paths using fuzzy PERT. IEEE Transactions on Systems, Man, and Cybernetics-Part B, 31(6), 930–937.CrossRefGoogle Scholar
  10. Coshall, J. T., & Charlesworth, R. (2011). A management orientated approach to combination forecasting of tourism demand. Tourism Management, 32, 759–769.CrossRefGoogle Scholar
  11. Diaz-Balteiro, L., & Romero, C. (2008). Making forestry decisions with multiple criteria: A review and an assessment. Forest Ecology and Management, 255, 3222–3241.CrossRefGoogle Scholar
  12. Dubois, D. (2011). The role of fuzzy sets in decision sciences: Old techniques and new directions. Fuzzy Sets and Systems, 184, 3–28.Google Scholar
  13. Dubois, D., & Prade, H. (1986). Possibility theory: An approach to computerized processing of uncertainty. New York, NY, USA: Plenum Press.Google Scholar
  14. Dubois, D., Fargier, H., & Prade, H. (1995). Fuzzy constraints in job-shop scheduling. Journal of Intelligent Manufacturing, 6, 215–234.Google Scholar
  15. Dubois, D., Fargier, H., & Fortemps, P. (2003). Fuzzy scheduling: Modelling flexible constraints vs. coping with incomplete knowledge. European Journal of Operational Research, 147, 231–252.MathSciNetCrossRefzbMATHGoogle Scholar
  16. Ehrgott, M. (2005). Multicriteria optimization (2nd ed.). Berlin: Springer.zbMATHGoogle Scholar
  17. Ehrgott, M., & Gandibleux, X. (2000). A survey and annotated bibliography of multiobjective combinatorial optimization. OR Spektrum, 22, 425–460.MathSciNetCrossRefzbMATHGoogle Scholar
  18. Farahani, R. Z., SteadieSeifi, M., & Asgari, N. (2010). Multiple criteria facility location problems: A survey. Applied Mathematical Modelling, 34, 1689–1709.MathSciNetCrossRefzbMATHGoogle Scholar
  19. Fortemps, P. (1997). Jobshop scheduling with imprecise durations: A fuzzy approach. IEEE Transactions of Fuzzy Systems, 7, 557–569.CrossRefGoogle Scholar
  20. Giffler, B., & Thompson, G. L. (1960). Algorithms for solving production scheduling problems. Operations Research, 8, 487–503.MathSciNetCrossRefzbMATHGoogle Scholar
  21. Gonçalves, J., Magalhaes Mendes, J. J., & Resende, M. G. C. (2005). A hybrid genetic algorithm for the job shop scheduling problem. European Journal of Operational Research, 167, 77–95.Google Scholar
  22. González Rodríguez, I., Puente, J., Vela, C. R., & Varela, R. (2008). Semantics of schedules for the fuzzy job shop problem. IEEE Transactions on Systems, Man and Cybernetics, Part A, 38(3), 655–666.CrossRefGoogle Scholar
  23. González-Rodríguez, I., Palacios, J.J., Vela, C.R., & Puente, J. (2010). Heuristic local search for fuzzy open shop scheduling. In: Proceedings IEEE international conference on fuzzy systems, FUZZ-IEEE2010 (pp. 1858–1865). IEEE.Google Scholar
  24. González Rodríguez, I., Vela, C. R., & Puente, J. (2010). A genetic solution based on lexicographical goal programming for a multiobjective job shop with uncertainty. Journal of Intelligent Manufacturing, 21, 65–73.CrossRefGoogle Scholar
  25. Graham, R., Lawler, E., & Lenstra, J. (1979). Optimization and approximation in deterministic sequencing and scheduling: A survey. Annals of Discrete Mathematics, 4, 287–326.MathSciNetCrossRefGoogle Scholar
  26. Guéret, C., & Prins, C. (1998). Classical and new heuristics for the open-shop problem: A computational evaluation. European Journal of Operational Research, 107, 306–314.CrossRefzbMATHGoogle Scholar
  27. Guiffrida, A. L., & Nagi, R. (1998). Fuzzy set theory applications in production management research: A literature survey. Journal of Intelligent Manufacturing, 9, 39–56.CrossRefGoogle Scholar
  28. Herroelen, W., & Leus, R. (2005). Project scheduling under uncertainty: Survey and research potentials. European Journal of Operational Research, 165, 289–306.CrossRefzbMATHGoogle Scholar
  29. Hu, X., Eberhart, R.C., & Shi, Y. (2003). Swarm intelligence for permutation optimization: A case study of n-queens problem. In: Swarm intelligence symposium, 2003. SIS’03. Proceedings of the 2003 IEEE (pp. 243–246). IEEE.Google Scholar
  30. Jia, Q., & Seo, Y. (2013). An improved particle swarm optimization for the resource-constrained project scheduling problem. International Journal of Advanced Manufacturing Technology , 67(9–12), 2627–2638.Google Scholar
  31. Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. IEEE international conference on neural networks (pp. 1942–1948). New Jersey: IEEE Press.Google Scholar
  32. Kim, B. I., & Son, S. J. (2012). A probability matrix based particle swarm optimization for the capacitated vehicle routing problem. Journal of Intelligent Manufacturing, 23, 1119–1126.CrossRefGoogle Scholar
  33. Lei, D. (2008). Pareto archive particle swarm optimization for multi-objective fuzzy job shop scheduling problems. International Journal of Advanced Manufacturing Technology, 37, 157–165.CrossRefGoogle Scholar
  34. Liaw, C. F. (1999). A tabu search algorithm for the open shop scheduling problem. Computers and Operations Research, 26, 109–126.MathSciNetCrossRefzbMATHADSGoogle Scholar
  35. Liaw, C. F. (2000). A hybrid genetic algorithm for the open shop scheduling problem. European Journal of Operational Research, 124, 28–42.MathSciNetCrossRefzbMATHGoogle Scholar
  36. Liberatore, F., Ortuño, M.T., Tirado, G., Vitoriano, B., & Scaparra, M. P. (2014). A hierarchical compromise model for the joint optimization of recovery operations and distribution of emergency goods in humanitarian logistics. Computers & Operations Research, 42, 3–13.Google Scholar
  37. Liu, B., & Liu, Y. K. (2002). Expected value of fuzzy variable and fuzzy expected value models. IEEE Transactions on Fuzzy Systems, 10, 445–450.CrossRefGoogle Scholar
  38. Marinakis, Y., & Marinaki, M. (2013). Particle swarm optimization with expanding neighborhood topology for the permutation flowshop scheduling problem. Soft Computing, 17(7), 1159–1173.CrossRefGoogle Scholar
  39. Naderi, B., Fatemi Ghomi, S. M. T., Aminnayeri, M., & Zandieh, M. (2011). A study on open shop scheduling to minimise total tardiness. International Journal of Production Research, 49(15), 4657–4678.Google Scholar
  40. Niu, Q., Jiao, B., & Gu, X. (2008). Particle swarm optimization combined with genetic operators for job shop scheduling problem with fuzzy processing time. Applied Mathematics and Computation, 205, 148–158.MathSciNetCrossRefzbMATHGoogle Scholar
  41. Noori-Darvish, S., Mahdavi, I., & Mahdavi-Amiri, N. (2012). A bi-objective possibilistic programming model for open shop scheduling problems with sequence-dependent setup times, fuzzy processing times, and fuzzy due-dates. Applied Soft Computing, 12, 1399–1416.CrossRefGoogle Scholar
  42. Palacios, J.J., González-Rodríguez, I., Vela, C.R., & Puente, J. (2011). Particle swarm optimisation for open shop problems with fuzzy durations. In: Proceedings of IWINAC 2011, Part I, Springer, Lecture Notes in Computer Science (Vol. 6686, pp. 362–371).Google Scholar
  43. Panahi, H., Rabbani, M., & Tavakkoli-Moghaddam, R. (2008). Solving an open shop scheduling problem by a novel hybrid multi-objective ant colony optimization. In: Eighth international conference on hybrid intelligent systems (pp. 320–325). IEEE.Google Scholar
  44. Pasandideh, S. H. R., Niaki, S. T. A., & Hajipour, V. (2013). A multi-objective facility location model with batch arrivals: two parameter-tuned meta-heuristic algorithms. Journal of Intelligent Manufacturing, 24(2), 331–348.Google Scholar
  45. Petrovic, S., Fayad, S., & Petrovic, D. (2008). Sensitivity analysis of a fuzzy multiobjective scheduling problem. International Journal of Production Research, 46(12), 3327–3344.CrossRefzbMATHGoogle Scholar
  46. Pinedo, M. L. (2008). Scheduling, theory, algorithms, and systems (3rd ed.). Berlin: Springer.zbMATHGoogle Scholar
  47. Prins, C. (2000). Competitive genetic algorithms for the open-shop scheduling problem. Mathematical Methods of Operations Research, 52, 389–411.MathSciNetCrossRefzbMATHGoogle Scholar
  48. Puente, J., Vela, C. R., & González-Rodríguez, I. (2010). Fast local search for fuzzy job shop scheduling. In: Proceedings of ECAI 2010 (pp. 739–744). IOS Press.Google Scholar
  49. Puente, J., Vela, C. R., González-Rodríguez, I., Rodríguez, L. J., & Palacios, J. J. (2013). GRASPing examination board assignments for university-entrance exams. In: IEA-AIE 2013, Proceedings of, Springer, Lecture notes in computer science (Vol 7906, pp. 171–180).Google Scholar
  50. Romero, C. (2001). Extended lexicographic goal programming: a unifying approach. Omega, 29, 63–71.CrossRefGoogle Scholar
  51. Sakawa, M., & Kubota, R. (2000). Fuzzy programming for multiobjective job shop scheduling with fuzzy processing time and fuzzy duedate through genetic algorithms. European Journal of Operational Research, 120, 393–407.MathSciNetCrossRefzbMATHGoogle Scholar
  52. Sha, D., Lin, H. H., & Hsu, C. (2010). A modified particle swarm optimization for multi-objective open shop scheduling. In: Proceeding of the international multiconference of engineers and computer scientists, Vol 3.Google Scholar
  53. Sha, D. Y., & Cheng-Yu, H. (2008). A new particle swarm optimization for the open shop scheduling problem. Computers & Operations Research, 35, 3243–3261.CrossRefzbMATHGoogle Scholar
  54. Tamiz, M., Jones, D., & Romero, C. (1998). Goal programming for decision making: An overview of the current state-of-the-art. European Journal of Operations Research, 111, 569–581.CrossRefzbMATHGoogle Scholar
  55. Tassopoulos, I. X., & Beligiannis, G. N. (2012). Using particle swarm optimization to solve effectively the school timetabling problem. Soft Computing, 16, 1229–1252.CrossRefGoogle Scholar
  56. T’kindt, V., & Billaut, J. C. (2006). Multicriteria scheduling. Theory, models and algorithms (2nd ed.). Berlin: Springer.zbMATHGoogle Scholar
  57. Vijay Chakaravarthy, G., Marimuthu, S., & Naveen Sait, A. (2013). Performance evaluation of proposed differential evolution and particle swarm optimization algorithms for scheduling m-machine flow shops with lot streaming. Journal of Intelligent Manufacturing, 24, 175–191.CrossRefGoogle Scholar
  58. Wang, L., Zhou, G., Xu, Y., & Min, L. (2013). A hybrid artificial bee colony algorithm for the fuzzy flexible job-shop scheduling problem. International Journal of Production Research, 51(2), 3593–3608.Google Scholar
  59. Zheng, Y., Li, Y., & Lei, D. (2011). Swarm-based neighbourhood search for fuzzy job shop scheduling. International Journal of Innovative Computing and Applications, 3(3), 144–151.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Juan José Palacios
    • 1
  • Inés González-Rodríguez
    • 2
    Email author
  • Camino R. Vela
    • 1
  • Jorge Puente
    • 1
  1. 1.Department of ComputingUniversity of OviedoGijónSpain
  2. 2.Department of Mathematics, Statistics and ComputingUniversity of CantabriaSantanderSpain

Personalised recommendations