Skip to main content

Estimation of optimal machining control parameters using artificial bee colony

Abstract

Modern machining processes such as abrasive waterjet (AWJ) are widely used in manufacturing industries nowadays. Optimizing the machining control parameters are essential in order to provide a better quality and economics machining. It was reported by previous researches that artificial bee colony (ABC) algorithm has less computation time requirement and offered optimal solution due to its excellent global and local search capability compared to the other optimization soft computing techniques. This research employed ABC algorithm to optimize the machining control parameters that lead to a minimum surface roughness (R\(_{a})\) value for AWJ machining. Five machining control parameters that are optimized using ABC algorithm include traverse speed (V), waterjet pressure (P), standoff distance (h), abrasive grit size (d) and abrasive flow rate (m). From the experimental results, the performance of ABC was much superior where the estimated minimum R\(_{a }\) value was 28, 42, 45, 2 and 0.9 % lower compared to actual machining, regression, artificial neural network (ANN), genetic algorithm (GA) and simulated annealing (SA) respectively.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Azmir, M. A., & Ahsan, A. K. (2008). Investigation on glass/epoxy composite surfaces machined by abrasive water jet machining. Journal of Materials Processing Technology, 198(1–3), 122–128.

    Article  Google Scholar 

  2. Caydas, U., & Hascalik, A. (2008). A study on surface roughness in abrasive waterjet machining process using artificial neural networks and regression analysis method. Journal of Materials Processing Technology, 202, 574–582.

    Article  Google Scholar 

  3. Chen, H., Lin, J., Yang, Y., & Tsai, C. (2010). Optimization of wire electrical discharge machining for pure tungsten using a neural network integrated simulated annealing approach. Expert Systems with Applications, 37(10), 7147–7153. doi:10.1016/j.eswa.2010.04.

    Article  Google Scholar 

  4. Karaboga, D., & Akay, B. (2009). A comparative study of Artificial Bee Colony algorithm. Applied Mathematics and Computation, 214, 108–132.

    Article  Google Scholar 

  5. Kolahan, F., & Hamid, K. (2009). Modeling and Optimization of Abrasive Waterjet Parameters using Regression Analysis. World Academy of Science, Engineering and Technology, 59(2009), 488–493.

    Google Scholar 

  6. Li, X., Yalaoui, F., Amodeo, L., & Chehade, H. (2012). Metaheuristics and exact methods to solve a multiobjective parallel machines scheduling problem. Journal of Intelligent Manufacturing, 23(4), 1179.

    Article  Google Scholar 

  7. Maji, K. & Pratihar, D. K. (2010). Modeling of electrical discharge machining process using conventional regression analysis and genetic algorithms. Journal of Materials Engineering and Performance, 20(7), 1–7.

    Google Scholar 

  8. Mokhtar, A., & Xu, X. (2011). Machining precedence of 21/2D interacting features in a feature-based data model. Journal of Intelligent Manufacturing, 22(2), 145–161.

    Article  Google Scholar 

  9. Nagendra Parashar, B. S., & Mittal, R. K. (2007). Elements of Manufacturing Processes. New Delhi: Prentice-Hall of India Private Limited.

    Google Scholar 

  10. Oduguwa, V., Tiwari, A., & Roy, R. (2005). Evolutionary computing in manufacturing industry: An overview of recent applications. Applied Soft Computing, 5(3), 281–299.

    Article  Google Scholar 

  11. Pal, S., Heyns, P. S., Freyer, B. H., Theron, N. J., & Pal, S. K. (2011). Tool wear monitoring and selection of optimum cutting conditions with progressive tool wear effect and input uncertainties. Journal of Intelligent Manufacturing, 22(4), 491–504.

    Article  Google Scholar 

  12. Pasam, V. K., Battula, S. B., Valli, P. M., & Swapna, M. (2010). Optimizing surface finish in WEDM using the taguchi parameter design method. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 32(2), 107–113.

    Article  Google Scholar 

  13. Rao, R. V., & Pawar, P. J. (2009). Modelling and optimization of process parameters of wire electrical discharge machining. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 223(11), 1431–1440.

  14. Rao, R. V., Pawar, P. J., & Davim, J. P. (2010). Parameter optimization of ultrasonic machining process using nontraditional optimization algorithms. Materials and Manufacturing Processes, 25(10), 1120–1130.

    Article  Google Scholar 

  15. Ridwan, F., Xu, X., & Liu, G. (2012). A framework for machining optimisation based on STEP-NC. Journal of Intelligent Manufacturing, 23(3), 423–441.

    Article  Google Scholar 

  16. Roy, R., & Mehnen, J. (2008). Dynamic multi-objective optimisation for machining gradient materials. CIRP Annals Manufacturing Technology, 57(1), 429–432.

    Article  Google Scholar 

  17. Saha, P., Singha, A., Pal, S. K., & Saha, P. (2008). Soft computing models based prediction of cutting speed and surface roughness in wire electro-discharge machining of tungsten carbide cobalt composite. International Journal of Advanced Manufacturing Technology, 39(1–2), 74–84.

    Article  Google Scholar 

  18. Salehi, M., & Bahreininejad, A. (2011). Optimization process planning using hybrid genetic algorithm and intelligent search for job shop machining. Journal of Intelligent Manufacturing, 22(4), 643–652.

    Article  Google Scholar 

  19. Samanta, S., & Chakraborty, S. (2011). Parametric optimization of some non-traditional machining processes using artificial bee colony algorithm. Engineering Applications of Artificial Intelligence, 24(6), 946–957.

    Article  Google Scholar 

  20. Selvan, M. C. P., & Raju, N. M. S. (2011). Selection of process parameters in abrasive waterjet cutting of copper. International Journal of Advanced Engineering Sciences and Technologies, 7(2), 254–257.

    Google Scholar 

  21. Senthilkumar, C., Ganesan, G., & Karthikeyan, R. (2010). Bi-performance optimization of electrochemical machining characteristics of Al/20%SiCp composites using NSGA-II. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 224(9), 1399–1407.

    Google Scholar 

  22. Singh, D. K. (2008). Fundamentals of manufacturing engineering. Boca Raton: CRS Press, Taylor and Francis Group.

    Google Scholar 

  23. Somashekhar, K. P., Ramachandran, N., & Mathew, J. (2009). Modeling and optimization of process parameters in micro wire EDM by genetic algorithm Retrieved from www.scopus.com.

  24. Topal, E. S., & Çoğun, C. (2011). Computer-based estimation and compensation of diametral errors in CNC turning of cantilever bars. Journal of Intelligent Manufacturing, 22(6), 853–865.

    Google Scholar 

  25. Yusup, N., & Zain, A. M. (2012). Evolutionary techniques in optimizing machining parameters: Review and recent applications (2007–2011). Expert Systems with Applications, 39(10), 9909–9927.

    Google Scholar 

  26. Zain, A. M., Haron, H., & Sharif, S. (2010a). Application of GA to optimize cutting conditions for minimizing surface roughness in end milling machining process. Expert System with Applications, 37, 4650–4659.

    Google Scholar 

  27. Zain, A. M., Haron, H., & Sharif, S. (2010b). Prediction of surface roughness in the end milling machining using artificial neural network. Expert System with Applications, 37, 1755–1768.

    Article  Google Scholar 

  28. Zain, A. M., Haron, H., & Sharif, S. (2010c). Simulated annealing to estimate the optimal cutting conditions for minimizing surface roughness in end milling Ti-6Al-4V. Machining Science and Technology, 14(1), 43–62.

    Article  Google Scholar 

  29. Zain, A. M., Haron, H., & Sharif, S. (2011). Genetic Algorithm and Simulated Annealing to estimate optimal process parameters of the abrasive waterjet machining. Engineering with Computers, 27, 251–259.

    Article  Google Scholar 

  30. Zain, A. M., Haron, H., & Sharif, S. (2012a). Integrated ANN-GA for estimating the minimum value for machining performance. International Journal of Production Research, 50(1), 191–213.

    Article  Google Scholar 

  31. Zain, A. M., Haron, H., Qasem, S. N., & Sharif, S. (2012b). Regression and ANN models for estimating minimum value of machining performance. Applied Mathematical Modelling, 36(4), 1477–1492.

    Article  Google Scholar 

Download references

Acknowledgments

Special appreciative to reviewers for useful advices and comments. The authors greatly acknowledge the Research Management Centre, UTM and Ministry of Higher Education Malaysia (MOHE) for financial support through the Exploratory Research Grant Scheme (ERGS) No.Q.J13000078284L003.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Azlan Mohd Zain.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yusup, N., Sarkheyli, A., Zain, A.M. et al. Estimation of optimal machining control parameters using artificial bee colony. J Intell Manuf 25, 1463–1472 (2014). https://doi.org/10.1007/s10845-013-0753-y

Download citation

Keywords

  • Machining
  • Abrasive waterjet
  • Optimization