Journal of Intelligent Manufacturing

, Volume 23, Issue 5, pp 1973–1983 | Cite as

2D qualitative shape matching applied to ceramic mosaic assembly

  • Lledó MuserosEmail author
  • Zoe Falomir
  • Francisco Velasco
  • Luis Gonzalez-Abril
  • Isabel Martí


A theory of shape recognition of 2D objects and its application in the ceramic industry for intelligent automation of the mosaic mural assembly process are presented in this paper. This theory qualitatively describes the shapes of the objects, considering: (i) shape boundary characteristics, such as angles, relative length, concavities, and curvature; and (ii) their color and size. The shapes to be recognized may be regular or irregular closed polygons, or closed curvilinear figures. Each figure is described as a symbolic character string that contains all its distinctive characteristics. This description is used to determine whether the shape of two figures matches. Then, given a design of a mosaic and given a set of physical ceramic tesserae, an application is developed in order to recognize the tesserae that form the mosaic, thus enabling the intelligent and automated assembly of ceramic mosaics.


Qualitative reasoning Cognitive vision Industrial robotics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Al-Mutawah K., Lee V., Cheung Y. (2009) A new multi-agent system framework for tacit knowledge management in manufacturing supply chains. Journal of Intelligent Manufacturing 20: 593–610CrossRefGoogle Scholar
  2. Belongie, S., Malik, J., & Puzicha, J. (2001). Matching shapes. In Proceedings of 8th IEEE international conference on computer vision (ICCV2001), Vol. I, pp. 454–461. Canada: Vancouver, July.Google Scholar
  3. Bennet, B. (1994). Spatial reasoning with propositional logics. In Principles of knowledge representation and reasoning: Proceedings of the 4th international conference (KR94). San Francisco, CA: Morgan Kaufmann.Google Scholar
  4. Biederman I. (1987) Recognition-by-components: A theory of human image understanding. Psychological Review 94(2): 115–147CrossRefGoogle Scholar
  5. Canny J. F. (1986) A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 8: 679–714CrossRefGoogle Scholar
  6. Chase S. C. (1997) Modeling spatial reasoning systems with shape algebras and formal logic. AI EDAM: Artificial Intelligence for Engineering Design, Analysis and Manufacturing 11(4): 273–285CrossRefGoogle Scholar
  7. Clementini E., Di Felice P. (1997) A global framework for qualitative shape description. GeoInformatica 1(1): 1–17CrossRefGoogle Scholar
  8. Cohn, A. G. (1995). A hierarchical representation of qualitative shape based on connection and convexity. In Proceedings COSIT’95 (pp. 311–326). Springer.Google Scholar
  9. Dierks L. (2004) Making mosaics: Designs, techniques & projects. A Sterling/Lark Book, New YorkGoogle Scholar
  10. Escrig, M. T., & Toledo, F. (1998). Qualitative spatial reasoning: theory and practice. Application to robot navigation. IOS Press, Frontiers in artificial intelligence and applications, ISBN 90 5199 4125.Google Scholar
  11. Frank A. (1992) Qualitative spatial reasoning with cardinal directions. Journal of Visual Languages and Computing 3: 343–371CrossRefGoogle Scholar
  12. Freksa, C., & Zimmermann, K. (1992). On the utilization of spatial structures for cognitively plausible and efficient reasoning. In IEEE international conference on systems, man and cybernetics, Chicago.Google Scholar
  13. Galton, A., & Meathrel, R. C. (1999). Qualitative outline theory. In IJCAI-99 (pp. 1061–1066). Stockholm, Sweden.Google Scholar
  14. Galton, A., & Meathrel, R. C. (2000). Qualitative representation of planar outlines. In Proceedings of 14th ECAI (pp. 224–228). IOS Press.Google Scholar
  15. Goldstone R. L. (1999) Similarity. In: Wilson R. A., Keil F. C. (eds) The MIT encyclopedia of the cognitive sciences. The MIT Press, Cambridge, Massachusetts, USAGoogle Scholar
  16. Gottfried B. (2005) Global feature Schemes for qualitative shape descriptions. In: Guesguen H.W., Freksa Gh., Ligozat G. (eds) IJCAI-05 WS on spatial an temporal reasoning. Edinburgh, ScotlandGoogle Scholar
  17. Giannarou S., Stathaki T. (2007) Shape signature matching for object identification invariant to image transformations and occlusion. In: Kropatsch W. G., Kampel M., Hanbury A. (eds) CAIP 2007, LNCS 4673. Springer, Berlin, Heidelberg, pp 710–717Google Scholar
  18. Hoffman, D. D., & Richards, W. A. (1982). Representing smooth plane curves for recognition: Implications for figure-ground reversal. In Proceedings of AAAI-82 (pp. 5–8). American Association for Artificial Intelligence.Google Scholar
  19. Hoffman D. D., Richards W. A. (1985) Parts of Recognition. In: Pinker S. (Ed.) Visual cognition. MIT Press, Cambridge, pp 65–96Google Scholar
  20. Jungert, E. (1993). Symbolic spatial reasoning on object shapes for qualitative matching. Spatial information theory. A theoretical basis for GIS. European, COSIT’93, LNCS, Vol. 716. Berlin: Springer.Google Scholar
  21. Leyton M. (1988) A process-grammar for shape. Artificial Intelligence 34: 213–247CrossRefGoogle Scholar
  22. Leyton M. (2005) Shape as memory storage. In: Cai Y. (Ed.) Ambient intelligence for scientific discovery, LNAI 3345. Springer, Berlin, Heidelberg, pp 81–103CrossRefGoogle Scholar
  23. Lu G. J., Sajjanhar A. (1999) Region-based shape representation and similarity measure suitable for content-based image retrieval. Multimedia Systems 7(2): 165–174CrossRefGoogle Scholar
  24. Marr, D., & Nishihara, H. K. (1978). Representation and recognition of the spatial organization of three-dimensional shapes. In Proceedings of the Royal Society of London, Series B 200 (pp. 269–294).Google Scholar
  25. Mehtre B. M., Kankanhalli M. S., Lee W. F. (1997) Shape measures for content based image retrieval: A comparison. Information Processing and Management 33(3): 319–337CrossRefGoogle Scholar
  26. Morse, B. S. (1994). Computation of object cores from grey-level images. PhD Thesis, University of North Carolina at Chapel Hill.Google Scholar
  27. Museros, L., & Escrig M. T. (2004). A qualitative theory for shape representation and matching. In Proceedings of the 18th international conference on qualitative reasoning (QR’04) (pp. 3–10).Google Scholar
  28. Museros L., Gonzalez-Abril L., Velasco F., Falomir Z. (2010) A pragmatic qualitative approach for juxtaposing shapes. Journal of Universal Computer Science 16(11): 1410–1424Google Scholar
  29. Nejad H. T. N., Sugimura N., Iwamura K., Tanimizu Y. (2010) Multi-agent architecture for dynamic incremental process planning in the flexible manufacturing system. Journal of Intelligent Manufacturing 21: 487–499CrossRefGoogle Scholar
  30. Rosin P. L. (1993) Multiscale representation and matching of curves using codons. CVGIP: Graphical Models and Image Processing 55: 286–310CrossRefGoogle Scholar
  31. Rucklidge W. J. (1997) Efficient locating objects using Hausdorff distance. International Journal of Computer Vision 24(3): 251–270CrossRefGoogle Scholar
  32. Steger, C. (1996). On the calculation of arbitrary moments of polygons. Technical Report FGBV-96-05, Technische Universität München.Google Scholar
  33. Tsai R. Y. (1987) Using Off-the-Shelf TV cameras and lenses. IEEE Journal of Robotics and Automation 3(4): 323–344CrossRefGoogle Scholar
  34. Zhang, D. S., & Lu, G. (2002). A comparative study of Fourier descriptors for shape representation and retrieval. In Proceedings of 5th Asian conference on computer vision (ACCV02) (pp. 646–651).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Lledó Museros
    • 1
    Email author
  • Zoe Falomir
    • 1
  • Francisco Velasco
    • 2
  • Luis Gonzalez-Abril
    • 2
  • Isabel Martí
    • 1
  1. 1.Department of Computer Sciences and EngineeringUniversitat Jaume I CastellónCastellónSpain
  2. 2.Department of Applied Economics IUniversity of SevilleSevillaSpain

Personalised recommendations