Journal of Intelligent Manufacturing

, Volume 23, Issue 4, pp 1157–1166 | Cite as

Metaheuristic based control of a flow rack automated storage retrieval system

  • Hakim Nadir Bessenouci
  • Zaki Sari
  • Latéfa Ghomri
Article

Abstract

This paper presents two metaheuristic algorithms, namely taboo search and simulated annealing, applied to the control of a flow rack automated storage retrieval system (AS/RS). These metaheuristic algorithms are developed to control the retrieval machine of the AS/RS in order to minimize the retrieval cycle time. Results of these metaheuristic algorithms are compared to classical heuristics and analytical models found in literature (Gaouar et al. in MOSIM 2006, Rabat, Maroc, avril 2006; Sari et al. in Int J Adv Manuf Technol 25:979–987, 2005; Ghomri & Sari in Conception et Production Intégrées, CPI’2009, Fes, Maroc, 19–21 Octobre 2009). These heuristics were developed to control the storage and retrieval of items in the AS/RS. On the other hand, analytical models were conceived to bring a bottom line for comparison of different control techniques. To carry out this comparative study, simulations were performed on a wide range of system configurations. In order to validate metaheuristics results, a sensitive study on their parameters was achieved, and the best parameters were selected for comparative study.

Keywords

Automated storage retrieval system Flow rack AS/RS Metaheuristics Simulated annealing Taboo search AS/RS control 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen S. L. (1992) A selection guide to AS/R systems. Industrial Engineering 24: 28–31Google Scholar
  2. Ashayeri J., Heuts R. M. (2002) A geometrical approach to computing expected cycle times for zone-based storage layouts in AS/RS. International Journal of Production Research 40: 4467–4483CrossRefGoogle Scholar
  3. Ashayeri J., Heuts R. M., Valkenburg M. W. T., Veraart M. R., Wilhelm H. C. (2002) A geometrical approach to computing expected cycle times for zonebased storage layouts in AS/RS. International Journal of Production Research 40(17): 4467–4483CrossRefGoogle Scholar
  4. Barrett, B. G. (1977). An empirical comparison of high-rise warehouse policies for operator-controlled stacker cranes. Rochester, NY: Logistics Research and Analysis, Eastman Kodak Company.Google Scholar
  5. Bianchi L., Dorigo M., Gambardella L. M., & Gutjahr W. J. (2006) Metaheuristics in Stochastic Combinatorial Optimization: A survey. IDSIA—Dalle Molle Institute for Artificial Intelligence Via Cantonale, Galleria 2, 6928 Manno Switzerland.Google Scholar
  6. Blum C., Roli A. (2003) Metaheuristics in combinatorial optimization: Overview and conceptual comparison. ACM Computing Surveys 35(3): 268–308CrossRefGoogle Scholar
  7. Bozer Y. A., & White, J. A. (1980). Optimum designs of automated storage/retrieval systems. In Proceedings of the TIMS/ORSA Joint National Meeting. Washington, DC.Google Scholar
  8. Bozer Y. A., White J. A. (1984) Travel-time models for automated storage/retrieval systems. IIE Transactions 16: 329–338CrossRefGoogle Scholar
  9. Chang S. H., Egbelu P. J. (1997) Relative pre-positioning of storage/retrieval machines in automated storage/retrieval systems to minimize maximum system response time. IIE Transactions 29: 303–312Google Scholar
  10. Chang D. T., Wen U. P., Lin J. T. (1995) The impact of acceleration/deceleration on travel-time models for automated storage/retrieval systems. IIE Transactions 27: 108–111CrossRefGoogle Scholar
  11. Chang D. T., Wen U. P. (1997) The impact of rack configuration on the speed profile of the storage and retrieval machine. IIE Transactions 29: 525–531Google Scholar
  12. Chang S. H., Egbelu P. J. (1997) Relative pre-positioning of storage/retrieval machines in automated storage/retrieval systems to minimize expected system response time. IIE Transactions 29: 313–322Google Scholar
  13. Dallari F., Marchet G., Ruggeri R. (2000) Optimisation of man-on-board automated storage/retrieval systems. Integrated Manufacturing Systems 11: 87–93CrossRefGoogle Scholar
  14. de KosterM. B. M., Le-Anh T., Yu Y. (2006) Optimal storage rack design for a 3-dimensional compact AS/RS. International Journal of Production Research 46(6): 1495–1514CrossRefGoogle Scholar
  15. Egbelu P. J., Wu C. T. (1993) A comparison of dwell point rules in automated storage/retrieval systems. International Journal of Production Research 31: 2515–2530CrossRefGoogle Scholar
  16. Egbelu P. J. (1991) Framework for dynamic positioning of storage/retrieval machines in an automated storage/retrieval system. International Journal of Production Research 29: 17–37CrossRefGoogle Scholar
  17. Gaouar, N., Sari, Z., & Ghouali, N. (2006) Modélisation et implémentation d’une heuristique de stockage/déstockage pour un AS/RS à convoyeur gravitationnel dans l’environnement ARENA. MOSIM 2006, Rabat, Maroc, avrilGoogle Scholar
  18. Ghomri, L., & Sari, Z. (2009). Modèle mathématique du temps de déstockage pour les AS/RS à convoyeur gravitationnel. Conception et Production Intégrées, CPI’2009, Fes, Maroc, 19–21 Octobre.Google Scholar
  19. Glover F. (1986) Future paths for integer programming and links to artificial intelligence. Computers & Operations Research 13: 533–549CrossRefGoogle Scholar
  20. Graves S. C., Hausman W. H., Schwarz L. B. (1977) Storage retrieval interleaving in automatic warehousing systems. Management Science 23: 935–945CrossRefGoogle Scholar
  21. Hausman W. H., Schwarz L. B., Graves S. C. (1976) Optimal storage assignment in automatic warehousing systems. Management Science 22(6): 629–638CrossRefGoogle Scholar
  22. Hwang H., Lim J. M. (1993) Deriving an optimal dwell point of the storage/retrieval machine in an automated storage/retrieval system. International Journal of Production Research 31: 2591–2602CrossRefGoogle Scholar
  23. Hwang H., Lee S. B. (1990) Travel-time models considering the operating characteristics of the storage and retrieval machine. International Journal of Production Research 28(10): 1779–1789CrossRefGoogle Scholar
  24. Karaswa Y., Nakayama H., Dohi S. (1980) Trade-off analysis for optimal design automated warehouses. International Journal of Systems Sciences 11: 567–576CrossRefGoogle Scholar
  25. Kirkpatrick S., Gelatt C.D., Vecchi M.P. (1983) Optimization by simulated annealing. Science 220(4598): 671–680CrossRefGoogle Scholar
  26. Koenig J. (1980) Design and model the total system. Industrial Engineering 12: 22–27Google Scholar
  27. Kouloughli, S., Sari, Z., & Sari, T. (2008). Optimisation des dimensions d’un AS/RS multi allées pour un temps de simple cycle minimale. In Proceedings of MOSIM’08, Paris, France. ISBN. 978-2—7430-1057-7.Google Scholar
  28. Kouloughli S., Sari Z., Sari T. (2010) Optimisation des dimensions d’un AS/RS multi-allée basée sur un modèle analytique du temps de simple cycle. Journal Européen Des Systèmes Automatisés (JESA) 44(2): 135–159CrossRefGoogle Scholar
  29. Kouvelis P., Papanicolaou V. (1995) Expected travel time and optimal boundary formulas for a two-class-based automated storage/retrieval system. International Journal of Production Research 33: 2889–2905CrossRefGoogle Scholar
  30. Kulturel S., Ozdemirel N. E. (1999) Experimental investigation of shared storage assignment policies in automated storage/retrieval systems. IIE Transactions 31: 739–749Google Scholar
  31. Lee H. F. (1997) Performance analysis for automated storage and retrieval systems. IIE Transactions 29(1): 15–28CrossRefGoogle Scholar
  32. Luke, S. (2010). Essentials of Metaheuristics. Zeroth Edition.Google Scholar
  33. Mansuri M. (1997) Cycle-time computation, and dedicated storage assignment, for AS/R systems. Computers & Industrial Engineering 33: 307–310CrossRefGoogle Scholar
  34. Metropolis N., Rosenbluth A.W., Rosenbluth M.N., Teller A.H., Teller E. (1953) Equations of state calculations by fast computing machines. Journal of Chemical Physics 21: 1087–1091CrossRefGoogle Scholar
  35. MHI. (1977). Considerations for planning and installing an automated storage/retrieval systems, Material Handling Institute, Inc., AS/RS Document-100 7M.Google Scholar
  36. Osman I. H., Laporte G. (1996) Metaheuristics: A bibliography. Annals of Operations Research 63: 513–623CrossRefGoogle Scholar
  37. Park B. C. (2001) An optimal dwell point for automated storage/retrieval systems with uniformly distributed, rectangular racks. International Journal of Production Research 39: 1469–1480CrossRefGoogle Scholar
  38. Park B. C. (2006) Performance of automated storage/retrieval systems with non-square-in-time racks and two-class storage. International Journal of Production Research 44: 1107–1123CrossRefGoogle Scholar
  39. Park B. C., Foley R. D., Frazelle E. H. (2006) Performance of miniload systems with two-class storage. European Journal of Operational Research 170: 144–155CrossRefGoogle Scholar
  40. Peters B. A., Smith J. S., Hale T. S. (1996) Closed form models for determining the optimal dwell point location in automated storage and retrieval systems. International Journal of Production Research 34: 1757–1771CrossRefGoogle Scholar
  41. Roodbergen K. J., Vis Iris F. A. (2009) A survey of literature on automated storage and retrieval systems. European Journal of Operational Research 194: 343–362CrossRefGoogle Scholar
  42. Sand G. M. (1976) Stacker crane product handling systems. Eastman Kodak CompanyGoogle Scholar
  43. Sari, Z. (2003). Modélisation, Analyse et Evaluation des Performances d’un AS/RS à Convoyeur Gravitationnel. PhD Thesis, Tlemcen University, Algeria.Google Scholar
  44. Sari, Z. (2009). Performance evaluation of flow-rack and unit load automated storage & retrieval systems. Conception et Production Intégrées, CPI’2009, Fes, Maroc, 19–21 Octobre.Google Scholar
  45. Sari Z., Saygin C., Ghouali N. (2005) Travel time models for flow-rack automated storage and retrieval systems. International Journal of Advanced Manufacturing Technology 25(9–10): 979–987CrossRefGoogle Scholar
  46. Sarker B. R., Babu P. S. (1995) Travel time models in automated storage/retrieval systems: A critical review. International Journal of Production Economics 40: 173–184CrossRefGoogle Scholar
  47. Schwarz L. B., Graves S. C., Hausman W. H. (1978) Scheduling policies for automatic warehousing systems: Simulation results. AIIE Transactions 10: 260–270CrossRefGoogle Scholar
  48. van Den Berg J. P., Gademann A. J. R. M. (2000) Simulation study of an automated storage/retrieval system. International Journal of Production Research 38: 1339–1356CrossRefGoogle Scholar
  49. Wen U. P., Chang D., Chen S. P. (2001) The impact of acceleration/deceleration on travel-time models in class-based automated S/R systems. IIE Transactions 33: 599–608Google Scholar
  50. Yu Y., de Koster M. B. M. (2009) Designing an optimal turnover-based storage rack for a 3D compact automated storage and retrieval system. International Journal of Production Research 47(6): 1551–1571CrossRefGoogle Scholar
  51. Zollinger, H. A. (1975). Planning, evaluating and estimating storage systems. In Proceedings of the Advanced Material Handling Seminar, Purdue University, IN.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Hakim Nadir Bessenouci
    • 1
  • Zaki Sari
    • 1
  • Latéfa Ghomri
    • 1
  1. 1.Automatic control laboratoryAboubekr Belkaid University of TlemcenTlemcenAlgeria

Personalised recommendations