Process integrated wire-bond quality control by means of cytokine-Formal Immune Networks

Abstract

Ultrasonic wire bonding is one of the most frequently used techniques in semiconductor production to establish electrical interconnections. Improper bonding process parameters, wire or substrate contamination or low substrate quality are some of the causes of failed bonds. Process integrated wire-bond quality control techniques compare process feedback signals to a reference for monitoring online the quality of a bond. The feedback signals sampled at high frequencies, constitute high dimensional vectors representing the bonding process characteristics. In the area of online bond failure detection, dimensionality reduction of the input signals and feature extraction of the characteristics of the process are very demanding. Cytokine-Formal Immune Network (cFIN) is a procedure for pattern recognition which presents a low recognition failure rate and a fast recognition due to the reduction of dimensions and feature extraction of the training pattern data set produced in the learning phase. We use cytokine-Formal Immune Networks for recognizing faults present during the wire bonding process. The recognition methodology is intended to be applied into a process integrated quality control system. Further an automated optimization procedure has been developed to find optimal cFIN training parameters. Very promising results for two wire bonding process setups are shown in this paper.

This is a preview of subscription content, log in to check access.

References

  1. Brökelmann, M., Król, R., Wallaschek, J., & Hesse, H. (2004). A self-sensing transducer for ultrasonic wire bonding. In Proceedings of the 18th international congress on acoustics (Vol. IV, pp. 2901–2904). (ICA 2004), 4–9 April 2004, Kyoto, Japan.

  2. Feng, W., Meng, Q., Xie, Y., & Meng Q. (2009). Online quality evaluation of ultrasonic wire bonding using input electrical signal of piezoelectric transducer. In WRI world congress on computer science and information engineering (Vol. 5, pp. 462–466).

  3. Hagenkötter, S., Brökelmann, M., & Hesse, H. J. (2008). PiQC—A process integrated quality control for nondestructive evaluation of ultrasonic wire bonds. In 2008 IEEE international ultrasonics symposium proceedings (pp. 402–405). Beijing: IEEE.

  4. Hesse, H. J., & Wallaschek, J. (2007). Ultrasonic transducer comprising a sensor disposed in the mounting. United States Patent 20070152021.

  5. Hou, T. H., Su, C. H., & Chang, H. Z. (2008a) An integrated multi-objective immune algorithm for optimizing the wire bonding process of integrated circuits. In Journal of Intelligent Manufacturing (Vol 19/3, pp. 361–374). Springer.

  6. Hou, T. H, Su, C. H., & Chang, H. Z. (2008b) Using neural networks and immune algorithms to find the optimal parmeters for an ic wire bonding process. Expert Systems with Applications: An International Journal (Vol. 34/1, pp. 427–436). Pergamon Press.

  7. Montealegre N., & Rammig F. J. (2008). Immuno-repairing of FPGA designs. In M. Hinchey, A. Pagnoni, F. J. Rammig & H. Schmeck (Eds.), Biologically-inspired collaborative computing, World Computer Congress (WCC 2008), international federation for information processing, Springer, Milano, Italy, Springer IFIP (Vol. 268/2008, pp. 137–149).

  8. Su, C. T., & Chiang, T. L. (2003). Optimizing the is wire bonding process using a neural networks/genetic algorithms approach. In Journal of Intelligent Manufacturing (Vol. 14/2, pp. 229–238). Springer.

  9. Tamura, H., Gotoh, T., Okumura, D., Tanaka, H., & Tanno, K. (2009). A study on the s-EMG pattern recognition using neural network. In International Journal of Innovative Computing, Information and Control (Vol 5/12(B), pp. 4877–4884). Springer.

  10. Tarakanov A. O. (2008) Formal immune networks: Self-organization and real-world applications, advanced information and knowledge processing (Vol. 3, pp. 271–290), Springer.

  11. Tarakanov A. O., Skormin V. A., Sokolova S. P. (2003) Immunocomputing, principles and applications. Springer, New York

    Google Scholar 

  12. Tarakanov A. O., Goncharova L. B., Tarakanov O. A. (2005a) A cytokine formal immune network. In Advances in artificial life, Lecture Notes in Computer Science, (Vol. 3630). Springer.

  13. Tarakanov A. O., Kvachev S. V., & Sukhorukov A. V. (2005b) A formal immune network and its implementation for on-line intrusion detection. In Computer network security, Lecture Notes in Computer Science (Vol. 3685, pp. 394–405). Springer.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Norma Montealegre.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Montealegre, N., Hagenkötter, S. Process integrated wire-bond quality control by means of cytokine-Formal Immune Networks. J Intell Manuf 23, 699–715 (2012). https://doi.org/10.1007/s10845-010-0420-5

Download citation

Keywords

  • Cytokine-Formal Immune Networks
  • Process integrated wire-bond quality control
  • Pattern recognition
  • Ultrasonic wire bonding
  • Immunocomputing
  • Semiconductor production