Adams, J., Balas, E., & Zawack, D. (1988). The shifting bottleneck procedure for job shop scheduling. Management Science. doi:10.1287/mnsc.34.3.391.
Amirthagadeswaran, K. S., & Arunachalam, V. P. (2007). Enhancement of performance of genetic algorithm for job shop scheduling problems through inversion operator. International journal of advanced manufacturing technology. doi:10.1007/s00170-005-0392-3.
Aydin M. E., Fogarty T. C. (2002) Simulated annealing with evolutionary process for job-shop scheduling problems. In: Giannakoglou K., Tsahalis D., Periaux J., Papailiou K., Fogarty T. C. (eds) Evolutionary methods for design, optimisation and control. CIMNE, Barcelona
Aydin, M. E., & Fogarty, T. C. (2004a). A simulated annealing algorithm for multi-agent systems: A job-shop scheduling application. Journal of Intelligent Manufacturing. doi:10.1023/B:JIMS.0000042665.10086.cf.
Aydin, M. E., & Fogarty, T. C. (2004b). Teams of autonomous agents for job-shop scheduling problems: An experimental study. Journal of Intelligent Manufacturing. doi:10.1023/B:JIMS.0000034108.66105.59.
Beasley, D., Bull, D., & Marti, R. (1993). A sequential niche technique for multimodal function optimization. Evolutionary Computation. doi:10.1162/evco.1993.1.2.101.
Brucker P. (1997) Scheduling algorithms (2nd ed.). Springer, Berlin, Germany
Google Scholar
Bruns, R. (1993). Direct chromosome representation and advanced genetic operators for production scheduling. In S. Forrest (Ed.), Proc. of the 5th International Conference on Genetic Algorithms (pp. 352–359). San Mateo: Kaufmann.
Canbolat, Y., & Gundogar, E. (2004). Fuzzy priority rule for job shop scheduling. Journal of Intelligent Manufacturing. doi:10.1023/B:JIMS.0000034116.50789.df.
Carlier J., Pinson E. (1989) An algorithm for solving the job shop problem. Management Science 35: 164–176
Article
Google Scholar
Cavichio, D. (1970). Adaptive search using simulated evolution. PhD Thesis. University of Michigan.
Cedeño, W., & Vemuri, V. R. (1999). Analysis of speciation and niching in the multi-niche crowding GA. Theoretical Computers Science, (229) (pp. 177–197). Elsevier.
Davis, L. (1989). Adapting operators probabilities in genetic algorithms. In J. D. Schaffer (Ed.), Proc. of the 3rd International Conference on Genetic Algorithms (pp. 375–378). San Mateo: Kaufmann.
Dunwey, G., Fengping, P., & Shifan, X. (2002). Adaptive niche hierarchy genetic algorithm. In Proc. of IEEE TENCON (pp. 39–42).
Eiben A. E., Smith J. E. (2007) Introduction to evolutionary computing (Natural Computing Series). Springer, Berlin, Germany
Google Scholar
El-Bouri, A., Azizi, A., & Zolfaghari, S. (2007). A comparative study of a New Heuristic based on adaptive memory programming and simulated annealing: The case of job shop scheduling. European Journal of Operational Research. doi:10.1016/j.ejor.2005.12.013.
Fang, H. (1994). Genetic algorithms in timetabling and scheduling. Doctoral dissertation. Department of Artificial Intelligence. University of Edinburgh.
Fang, H., Ross, P., & Corne, D. (1993). A promising genetic algorithm approach to job shop scheduling, rescheduling and open shop scheduling problem. In S. Forrest (Ed.), Proc. of the 5th International Conference on Genetic Algorithms (pp. 375–382). San Mateo: Kaufmann.
Fogel, D. B. (eds) (1998) Evolutionary computation. The fossil record (Selected readings on the history of evolutionary computation). IEEE press, New York
Google Scholar
French S. (1982) Sequencing and scheduling: An introduction to the mathematics of the job shop. Ellis Horwood, Chichester, USA
Google Scholar
Garey M., Johnson D. (1979) Computers and intractability: A guide to the theory of NP-Completeness. Freeman, New York
Google Scholar
Gento, A. M., & Pérez, M. E. (2002). Study on the genetic operators for the job shop problem. In Proc. of the First Spanish Conference on Evolutionary and Bioinspired Algorithms (pp. 523–530). Mérida, Spain, (in Spanish).
Geyik, F., & Cedimoglu, I. (2004). The strategies and parameters of tabu search for job-shop scheduling. Journal of Intelligent Manufacturing. doi:10.1023/B:JIMS.0000034106.86434.46.
Giffer, B., & Thompson, G. L. (1960). Algorithms for solving production scheduling problems. Operations Research. doi:10.1287/opre.8.4.487.
Glover F., Laguna M. (1997) Tabu search. Kluwer, Boston
Book
Google Scholar
Goldberg D. E. (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley, MA
Google Scholar
Goldberg D. E. (2002) The design of innovation: Lessons from and for competent genetic algorithms. Kluwer, Boston, MA
Google Scholar
Goldberg, D. E., & Richardson, J. (1987). Genetic algorithms with sharing for multimodal function optimization. In Proc. of the 2nd International Conference on Genetic Algorithms (pp. 41–49).
Greenberg, H. (1968). A branch-bound solutions to the general scheduling problem. Operations Research. doi:10.1287/opre.16.2.353.
Harik, G. (1995). Finding multiple solutions using restricted tournament selection. In L. Eschelman (Ed.), Proceedings of the Sixth International Conference on Genetic Algorithms (pp. 24–31). Kaufmann, USA.
Hart E., Ross P., Corne D. (2005) Evolutionary scheduling: A review. Genetic Programming and Evolvable Machines 6: 191–220
Article
Google Scholar
Hasan, S. M. K., Sarker, R., & Cornforth, D. J. (2007). Hybrid genetic algorithm for solving job-shop scheduling problem. In R. Lee, M. U. Chowdhury, S. Ray, & T. Lee (Eds.), Proceedings of the 6th IEEE International Conference on Computer and Information Science (pp. 519–524). July 2007, Melbourne.
Hoss H., Stützle T. (2004) Stochastic local search-foundations and applications. Morgan Kaufmann, San Francisco
Google Scholar
Hu, J. J., & Goodman, E. D. (2004). Robust and efficient genetic algorithms with hierarchical niching and a sustainable evolutionary computation model. In K. Deb, et al. (Eds.), GECCO (pp. 1220–1232).
Jain A. S., Meeran S. (1999) Theory and methodology deterministic job-shop scheduling: Past, present and future. European Journal of Operational Research 113: 390–434
Article
Google Scholar
Kim, J., Cho, D., Jung, H., & Lee, C. (2002). Niching genetic algorithm adopting restricted competition selection combined with pattern search method. IEEE Transactions on magnetic. doi:10.1109/20.996257.
Kirkpatrick, S., Gelatt, C. D., Jr., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science. doi:10.1126/science.220.4598.671.
Kobayashi, S., Ono, I., & Yamamura, M. (1995). An efficient genetic algorithm for the job shop scheduling problem. In L. Eschelman (Ed.), Proceedings of the Sixth International Conference on Genetic Algorithms (pp. 506–511). San Francisco: Kaufmann.
Lee, Ch., Cho, D., & Jung, H. (1999). Niching genetic algorithm with restricted competition selection for multimodal function optimization. IEEE transactions on magnetics. doi:10.1109/20.767361.
Li, J., Balazs, M., Parks, G. T., & Clarkson, P. J. (2002). A species conserving genetic algorithm for multimodal function optimization. Evolutionary computation. doi:10.1162/106365602760234081.
Lin, S., Goodman, E.D., & Punch, W. P. (1997). A genetic approach to dynamic job shop scheduling problems. In T. Bäck (Ed.), Proceedings of the Seventh International Conference on Genetic Algorithms (pp. 481–488). San Francisco: Kaufmann.
Lin, C., & Wu, W. (2002). Niche identification techniques in multimodal genetic search with sharing scheme. Advances in Engineering Software (33), 779–791.
Mahfoud S.W. (1992) Crowding and preservation revisited. In: Männer R., Manderick B. (eds) Parallel problem solving form nature II. Elsevier, New York, pp 27–36
Google Scholar
Mattfeld D. C. (1995) Evolutionary search and the job shop. Investigations on genetic algorithms for production scheduling. Springer, Berlin
Google Scholar
Michalewicz Z. (1995) Genetic algorithms + Data structures + Evolutions programs. Springer, Berlin, Germany
Google Scholar
Nakano, R., & Yamada, T. (1991). Convencional genetic algorithms for job shop problems. In R. Belew, & L. B. Booker (Eds.), Proc. of the 4
th
International Conference on Genetic Algorithms (pp. 474–479). California: Kaufmann.
Nowicki E., Smutnicki C. (1996) A fast tabu search algorithm for the job shop problem. Management Science 42: 797–813
Article
Google Scholar
Nowicki E., Smutnicki C. (2005) An advanced tabu algorithm for the job shop problem. Journal of Scheduling 8: 145– 159
Article
Google Scholar
Oei, C. K., Godberg, D. E., & Chang, S. J. (1991). Tournament selection, niching and the preservation of diversity. IlliGAL Report No. 91011. University of Illinois, USA.
Panwalkar, S. S., & Iskander, W. (1977). A survey of scheduling rules. Operations Research. doi:10.1287/opre.25.1.45.
Pétrowski, A. (1996). A clearing procedure as a niching method for genetic algorithms. In Proc. IEEE International Conference on Evolutionary Computation (pp. 798–803). Japan.
Pétrowski, A. (1997). A new selection operator dedicated to speciatin. In T. Bäck (Ed.), Proc. of the 7th
International Conference on Genetic Algorithms (pp. 144–151). San Mateo: Kaumann.
Pérez, E., Herrera, F., Hernández, C. (2003). Finding multiple solutions in job shop scheduling by niching genetic algorithms. Journal of Intelligent Manufacturing. doi:10.1023/A:1024649709582.
Ramalhinho H., Marti O., Stützle T. (2003) Iterated local search. In: Glover F., Kochenberger G. A. (eds) Handbook of metaheuristics. Kluwer, MA, pp 321–354
Google Scholar
Sareni B., Krahenbuhl L. (1998) Fitness sharing and niching methods revisited. IEEE Transactions on Evolutionary Computation 2: 97–106
Article
Google Scholar
Sivanandam S. N., Deepa S. N. (2007) Introduction to genetic algorithms. Springer, Berlin, Germany
Google Scholar
Usher, J. (2003). Negotiation-based routing in job shops via collaborative agents. Journal of Intelligent Manufacturing. doi:10.1023/A:1025705426184.
Van Laarhoven, P. J. M., Aarts, E. H. L., & Lenstra, J. K. (1992). Job shop scheduling by simulated annealing. Operations Research, doi:10.1287/opre.40.1.113.
Vazquez, M., & Whitley, L. D. (2000). A comparison of genetic algorithms for the static job shop scheduling problem. In Parallel Problem Solving from Nature Conference 2000 (PPSN VI) (pp. 303–312).
Wang L., Zheng D. Z. (2001) An effective hybrid optimization strategy for job shop scheduling problems. Computers and Operationas Research 28: 585–596
Article
Google Scholar
Watson J. P., Beck C., Howe A. E., Whitley L. D. (2003) Problem difficulty for Tabu search in job-shop scheduling. Artificial Intelligence 143(2): 189–217
Article
Google Scholar
Watson, J. P., Howe, A. E., & Whitley, L. D. (2006). Deconstructing Nowicki and Smutnicki’s i-TSAB tabu search algorithm for the job-shop scheduling problem. Computers and Operations Research. doi:10.1016/j.cor.2005.07.016.
Weckman, G., Ganduri, C., & Koonce, D. (2008). A neural network job-shop scheduler. Journal of Intelligent Manufacturing. doi:10.1007/s10845-008-0073-9.
Wenqi, H., & Aihua, Y. (2004). An improved shifting bottleneck procedure for the job shop scheduling problem. Computers and Operations Research. doi:10.1016/S0305-0548(03)00243-0.
Yang S., Wang D. (2000) Constraint satisfaction adaptive neural network and heuristics combined approach for generalized job shop scheduling. IEEE Trans. on Neural Networks 11: 474–486
Article
Google Scholar
URL: Further explanations about JSSP; October 2009; www.eis.uva.es/elena/JSSP.
URL: Further explanations about MMGAs; October 2009; www.eis.uva.es/elena/MMGAs.
URL: Optima solutions of la01-la05, mt06, mt10 ad mt20;October 2009; www.eis.uva.es/elena/JSSP/optima.htm.
URL: OR-Library; October 2009; http://people.brunel.ac.uk/~mastjjb/jeb/info.html.