Advertisement

Journal of Intelligent Manufacturing

, Volume 21, Issue 4, pp 575–590 | Cite as

A review of applications of genetic algorithms in lot sizing

  • Hacer Guner GorenEmail author
  • Semra Tunali
  • Raf Jans
Review Article

Abstract

Lot sizing problems are production planning problems with the objective of determining the periods where production should take place and the quantities to be produced in order to satisfy demand while minimizing production, setup and inventory costs. Most lot sizing problems are combinatorial and hard to solve. In recent years, to deal with the complexity and find optimal or near-optimal results in reasonable computational time, a growing number of researchers have employed meta-heuristic approaches to lot sizing problems. One of the most popular meta-heuristics is genetic algorithms which have been applied to different optimization problems with good results. The focus of this paper is on the recent published literature employing genetic algorithms to solve lot sizing problems. The aim of the review is twofold. First it provides an overview of recent advances in the field in order to highlight the many ways GAs can be applied to various lot sizing models. Second, it presents ideas for future research by identifying gaps in the current literature. In reviewing the relevant literature the focus has been on the main features of the lot sizing problems and the specifications of genetic algorithms suggested in solving these problems.

Keywords

Production planning Meta-heuristics Lot sizing Genetic algorithms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Afentakis P. (1987) Parallel heuristic algorithm for lot-sizing in multistage production systems. IIE Transactions 19(1): 34–42. doi: 10.1080/07408178708975367Institute of Industrial Engineers
  2. Askin R.G., Goldberg J.B. (2002) Design and analysis of lean production systems. Wiley, United States of AmericaGoogle Scholar
  3. Aytug H., Khouja M., Vergara F.E. (2003) Use of genetic algorithms to solve production and operations management problems: A review. International Journal of Production Research 41(17): 3955–4009. doi: 10.1080/00207540310001626319 CrossRefGoogle Scholar
  4. Bahl H.C., Ritzman L.P., Gupta J.N.D. (1987) Determining lot sizes and resource requirements: A review. Operations Research 35(3): 329–345CrossRefGoogle Scholar
  5. Belvaux G., Wolsey L.A. (2001) Modeling practical lot-sizing problems as mixed-integer programs. Management Science 47(7): 993–1007. doi: 10.1287/mnsc.47.7.993.9800 CrossRefGoogle Scholar
  6. Bomberger E. (1966) A dynamic programming approach to a lot scheduling problem. Management Science 12: 778–784CrossRefGoogle Scholar
  7. Brahimi N., Dauzere-Peres S., Najid N.M., Nordli A. (2006) Single item lot sizing problems. European Journal of Operational Research 168(1): 1–16. doi: 10.1016/j.ejor.2004.01.054 CrossRefGoogle Scholar
  8. Chang P.T., Yao M.J., Huang S.F., Chen C.T. (2006) A genetic algorithm for solving economic fuzzy lot-size scheduling problem. International of Production Economics 102: 265–288. doi: 10.1016/j.ijpe.2005.03.008 CrossRefGoogle Scholar
  9. Chatfield D.C. (2007) The economic lot scheduling problem: A pure genetic search approach. Computers & Operations Research 34: 2865–2881. doi: 10.1016/j.cor.2005.11.001 CrossRefGoogle Scholar
  10. De Bodt M.A., Gelders L.F., Van Wassenhove L.N. (1984) Lot sizing under dynamic demand conditions: A review. Engineering Costs and Production Economics 8: 165–187. doi: 10.1016/0167-188X(84)90035-1 CrossRefGoogle Scholar
  11. Degraeve Z., Jans R. (2007) A new Dantzig-Wolfe reformulation and branch-and-price algorithm for the capacitated lot sizing problem with set up times. Operations Research 55(5): 909–920. doi: 10.1287/opre.1070.0404 CrossRefGoogle Scholar
  12. Dellaert N., Jeunet J. (2000) Solving large unconstrained multilevel lot-sizing problems using a hybrid genetic algorithm. International Journal of Production Research 38(5): 1083–1099. doi: 10.1080/002075400189031 CrossRefGoogle Scholar
  13. Dellaert N., Jeunet J., Jonard N. (2000) A genetic algorithm to solve the general multi level lot-sizing problem with time-varying costs. International Journal of Production Economics 68: 241–257. doi: 10.1016/S0925-5273(00)00084-0 CrossRefGoogle Scholar
  14. Drexl A., Kimms A. (1997) Lot sizing and scheduling-survey and extensions. European Journal of Operational Research 99: 221–235. doi: 10.1016/S0377-2217(97)00030-1 CrossRefGoogle Scholar
  15. Duda J. (2005) Lot-sizing in a foundry using genetic algorithm and repair functions. Lecture Notes in Computer Science 3448: 101–111CrossRefGoogle Scholar
  16. Elmaghraby S.E. (1978) The economic lot scheduling problem (ELSP): Review and extensions. Management Science 24(6): 587–598CrossRefGoogle Scholar
  17. Gaafar L. (2006) Applying genetic algorithms to dynamic lot sizing with batch ordering. Computers & Industrial Engineering 51(3): 433–444. doi: 10.1016/j.cie.2006.08.006 CrossRefGoogle Scholar
  18. Gen, M., & Cheng, R. (1997). Genetic algorithms and engineering design. Wiley Series in Engineering: Design and Automation United States of America.Google Scholar
  19. Gopalakrishnan M., Ding K., Bourjolly J.-M., Mohan S. (2001) A tabu search heuristic for the capacitated lot-sizing problem with set-up carryover. Management Science 47(6): 851–863. doi: 10.1287/mnsc.47.6.851.9813 CrossRefGoogle Scholar
  20. Hernandez W., Süer A.G. (1999) Genetic algorithms in lot sizing decisions. Proceedings of the 1999(Congress on Evolutionary Computation 3): 2280–2286Google Scholar
  21. Heuvelvan den W., Wagelmans A.P.M. (2005) A comparison of methods for lot-sizing in a rolling horizon environment. Operations Research Letters 33: 486–496CrossRefGoogle Scholar
  22. Hop N.V., Tabucanon M.T. (2005) Adaptive genetic algorithm for lot-sizing problem with self-adjustment operation rate. International of Production Economics 98: 129–135. doi: 10.1016/j.ijpe.2004.05.016 CrossRefGoogle Scholar
  23. Hung Y.-F., Chien K.-L. (2000) Multi-class multi level capacitated lot sizing model. The Journal of the Operational Research Society 51(11): 1309–1318Google Scholar
  24. Hung Y. F., Shih C.-C., Chen C.-P. (1999) Evolutionary algorithms for production planning problems with setup decisions. The Journal of the Operational Research Society 50(8): 857–866Google Scholar
  25. Jans R., Degraeve Z. (2007) Meta-heuristics for dynamic lot sizing: A review and comparison of solution approaches. European Journal of Operational Research 177(3): 1855–1875. doi: 10.1016/j.ejor.2005.12.008 CrossRefGoogle Scholar
  26. Jans R., Degraeve Z. (2008) Modeling industrial lot sizing: A review. International Journal of Production Research 46(6): 1619–1643. doi: 10.1080/00207540600902262 CrossRefGoogle Scholar
  27. Jung H., Song I., Jeong B. (2007) Genetic algorithm-based integrated production planning considering manufacturing partners. International Journal of Advanced Manufacturing Technology 32: 547–556. doi: 10.1007/s00170-005-0347-8 CrossRefGoogle Scholar
  28. Kämpf M., Köchel P. (2006) Simulation-based sequencing and lot size optimization for a production-and-inventory system with multiple items. International Journal of Production Economics 104(1): 191–200. doi: 10.1016/j.ijpe.2006.02.008 CrossRefGoogle Scholar
  29. Karimi B., Fatemi S.M.T., Fatemi S.M.T., Wilson J.M. (2003) The capacitated lot sizing problem: A review of models and algorithms. Omega 31: 365–378. doi: 10.1016/S0305-0483(03)00059-8 CrossRefGoogle Scholar
  30. Karimi B., Fatemi S.M.T., Fatemi S.M.T., Wilson J.M. (2006) A tabu search heuristic for solving the CLSP with backlogging and setup carryover. The Journal of the Operational Research Society 57(2): 140–147Google Scholar
  31. Khouja M., Michalewics Z., Wilmot M. (1998) The use of genetic algorithms to solve the economic lot size scheduling problem. European Journal of Operational Research 110: 509–524. doi: 10.1016/S0377-2217(97)00270-1 CrossRefGoogle Scholar
  32. Kimms A. (1999) A genetic algorithm for multi level, multi-machine lot sizing and scheduling. Computers & Operations Research 26: 829–848. doi: 10.1016/S0305-0548(98)00089-6 CrossRefGoogle Scholar
  33. Kirca O., Kokten M. (1994) New heuristic approach for the multi-item dynamic lot sizing problem. European Journal of Operational Research 75(2): 332–341. doi: 10.1016/0377-2217(94)90078-7 CrossRefGoogle Scholar
  34. Kohlmorgen U., Schmeck H., Haase K. (1999) Experience with fine-grained parallel genetic algorithms. Annals of Operations Research 90: 203–219. doi: 10.1023/A:1018912715283 CrossRefGoogle Scholar
  35. Kuik R., Salomon M., Van Wassenhove L.N. (1994) Batching decisions: Structure and models. European Journal of Operational Research 75: 243–263. doi: 10.1016/0377-2217(94)90072-8 CrossRefGoogle Scholar
  36. Kuo H., Inman R. (1990) A practical heuristic for the group technology economic lot scheduling problem. International Journal of Production Research 28: 709–722. doi: 10.1080/00207549008942750 CrossRefGoogle Scholar
  37. Li Y., Chen J., Cai X. (2007) Heuristic genetic algorithm for capacitated production planning problems with batch processing and remanufacturing. International Journal of Production Economics 105(2): 301–317. doi: 10.1016/j.ijpe.2004.11.017 CrossRefGoogle Scholar
  38. Megala N., Jawahar N. (2006) Genetic algorithm and hopfield neural network for a dynamic lot sizing problem. International Advanced Manufacturing Technologies 27: 1178–1191. doi: 10.1007/s00170-004-2306-1 CrossRefGoogle Scholar
  39. Moon I.K., Cha B.C., Bae H.C. (2006) Hybrid genetic algorithm for group technology economic lot scheduling problem. International Journal of Production Research 44(21): 4551–4568. doi: 10.1080/00207540500534405 CrossRefGoogle Scholar
  40. Moon I., Silver E.A., Choi S. (2002) Hybrid genetic algorithm for the economic lot-scheduling problem. International Journal of Production Research 40(4): 809–824. doi: 10.1080/00207540110095222 CrossRefGoogle Scholar
  41. Ozdamar L., Barbarosoglu G. (1999) Hybrid heuristics for the multi-stage capacitated lot sizing and loading problem. The Journal of the Operational Research Society 50: 810–825. doi: 10.2307/3010340 Google Scholar
  42. Ozdamar L., Birbil S.I. (1998) Hybrid heuristics for the capacitated lot sizing and loading problem with setup times and overtime decisions. European Journal of Operational Research 110: 525–547. doi: 10.1016/S0377-2217(97)00269-5 CrossRefGoogle Scholar
  43. Ozdamar L., Birbil S.I., Portmann M.C. (2002) Technical note: New results for the capacitated lot sizing problem with overtime decisions and setup times. Production Planning and Control 13: 2–10. doi: 10.1080/09537280110049272 CrossRefGoogle Scholar
  44. Ozdamar L., Bozyel M.A. (2000) Capacitated lot sizing problem with overtime decisions and setup times. IIE Transactions 32(11): 1043–1057 Institute of Industrial EngineersGoogle Scholar
  45. Pitakaso R., Almeder C., Doerner K.F., Hartl R.F. (2007) A MAX-MIN ant system for unconstrained multi level lot-sizing problems. Computers & Operations Research, 34(9): 2533–2552. doi: 10.1016/j.cor.2005.09.022 CrossRefGoogle Scholar
  46. Prasad P.S.S., Chetty O.V.K. (2001) Multi-level lot sizing with a genetic algorithm under fixed and rolling horizons. International Journal of Manufacturing Technology 18: 520–527. doi: 10.1007/s001700170045 CrossRefGoogle Scholar
  47. Raidl, & Gunther, R. (2006). A unified view on hybrid meta-heuristics. Lecture Notes in Computer, Hybrid Meta-heuristics—Third International Workshop, HM 2006. Proceedings, Vol. 4030, pp. 1–12.Google Scholar
  48. Sarker R., Newton C. (2002) A genetic algorithm for solving economic lot size scheduling problem. Computers & Industrial Engineering 42: 189–198. doi: 10.1016/S0360-8352(02)00027-X CrossRefGoogle Scholar
  49. Srinivas M., Patnaik L.M. (1994) Adaptive probabilities of crossover and mutation in genetic algorithms. IEEE Transactions on Systems, Man, and Cybernetics 24(4): 656–667. doi: 10.1109/21.286385 CrossRefGoogle Scholar
  50. Staggemeier, A. T., & Clark, A. R. (2001). A Survey of Lot-sizing and scheduling models. Presented at the Proceedings of 23rd Annual Symposium of the Brazilian Operational Research Society.Google Scholar
  51. Tang O. (2004) Simulated annealing in lot sizing problems. International Journal of Production Economics 88(2): 173–181. doi: 10.1016/j.ijpe.2003.11.006 CrossRefGoogle Scholar
  52. Tempelmeier H., Helber S. (1994) Heuristic for dynamic multi-item multi-level capacitated lot sizing for general product structures. European Journal of Operational Research 75(2): 296–311. doi: 10.1016/0377-2217(94)90076-0 CrossRefGoogle Scholar
  53. Yao M.J., Huang J.X. (2005) Solving the economic lot scheduling problem with deteriorating items using genetic algorithms. Journal of Food Engineering 70: 309–322. doi: 10.1016/j.jfoodeng.2004.05.077 CrossRefGoogle Scholar
  54. Wagner H.M., Whitin T.M. (1958) Dynamic version of the economic lot size model. Management Science 5(1): 89–96CrossRefGoogle Scholar
  55. Wolsey L.A. (1995) Progress with single-item lot-sizing. European Journal of Operational Research 86: 395–401. doi: 10.1016/0377-2217(94)00341-9 CrossRefGoogle Scholar
  56. Xie J. (1995) An application of genetic algorithms for general dynamic lot sizing problems. Proceedings of Genetic Algorithms in Engineering Systems: Innovations and Applications 414: 82–87Google Scholar
  57. Xie J., Dong J. (2002) Heuristic genetic algorithms for general capacitated lot sizing problems. Computers & Mathematics with Applications (Oxford, England) 44: 263–276. doi: 10.1016/S0898-1221(02)00146-3 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Industrial EngineeringDokuz Eylul UniversityBornova, IzmirTurkey
  2. 2.HEC MontréalMontrealCanada

Personalised recommendations