A hybrid multi-criteria decision-making model for personnel selection in manufacturing systems

Abstract

This study described a hybrid model for supporting the personnel selection process in manufacturing systems. Personnel selection is a very important issue for an effective manufacturing system, since the improper personnel might cause many problems affecting productivity, precision, flexibility and quality of the products negatively. On the other hand, selecting the best personnel among many alternatives is a multi-criteria decision making (MCDM) problem. In this study, a hybrid model which employs analytic network process (ANP) and modified TOPSIS (Technique for Order Performance by Similarity to Idea Solution) together, is proposed for the personnel selection problem. The ANP is used to analyze the structure of the personnel selection problem and to determine weights of the criteria, and modified TOPSIS method is used to obtain final ranking. To illustrate how the approach is used for the personnel selection problem, an application of a real case in a company is conducted. The application has demonstrated the effectiveness and feasibility of the proposed model. Company management found the application and results satisfactory and implementable in their personnel selection process.

This is a preview of subscription content, access via your institution.

References

  1. Agarwal A., Shankar R., Tiwari M.K. (2006) Modeling the metrics of lean, agile and leagile supply chain: An ANP-based approach. European Journal of Operational Research 173: 211–225. doi:10.1016/j.ejor.2004.12.005

    Article  Google Scholar 

  2. Borman W.C., Hanson M.A., Hedge J.W. (1997) Personnel selection. Annual Review of Psychology 48: 199–337. doi:10.1146/annurev.psych.48.1.299

    Article  Google Scholar 

  3. Capaldo G., Zollo G. (2001) Applying fuzzy logic to personnel assessment: A case study. The International Journal of Management Science 29: 585–597

    Google Scholar 

  4. Chien C.-F., Chen L.-F. (2008) Data mining to improve personnel selection and enhance human capital: A case study in high-technology industry. Expert Systems with Applications 34: 280–290. doi:10.1016/j.eswa.2006.09.003

    Article  Google Scholar 

  5. Dağdeviren M., Yüksel İ, Kurt M. (2008) A fuzzy analytic network process (ANP) model to identify faulty behaviors risk (FBR) in work systems. Safety Science 34: 96–107

    Google Scholar 

  6. Deng H., Yeh C.H., Wilis R.J. (2000) Inter-company comparison using modified TOPSIS with objective weights. Computers & Operations Research 27: 963–973. doi:10.1016/S0305-0548(99)00069-6

    Article  Google Scholar 

  7. Ertugrul, İ., Karakasoglu, N. (2007). Performance evaluation of Turkish cement firms with fuzzy analytic hierarchy process and TOPSIS methods. Expert Systems with Applications, in press.

  8. Gargano, M. L., Marose, R. A., & Kleeck, L. (1991). An application of artificial neural networks and genetic algorithms to personnel selection in the financial industry. In Proceedings of the First International Conference on Artificial Intelligence Applications, pp. 257–262.

  9. Gibney R., Shang J. (2007) Decision making in academia: A case of the dean selection process. Mathematical and Computer Modelling 46: 1030–1040. doi:10.1016/j.mcm.2007.03.024

    Article  Google Scholar 

  10. Hwang C.L., Yoon K. (1981) Multiple attribute decision making: Methods and applications, a state of the art survey. Springer-Verlag, New York

    Google Scholar 

  11. Karsak. E.E. (2001). Personnel selection using a fuzzy MCDM approach based on ideal and anti-ideal solutions. Multiple criteria decision making in the new millenium, Berlin, 2007–2012.

  12. Karsak E.E., Sozer S., Alptekin S.E. (2002) Production planning in quality function deployment using a combined analytical network process and goal programming approach. Computers & Industrial Engineering 44: 171–190. doi:10.1016/S0360-8352(02)00191-2

    Article  Google Scholar 

  13. Lee J.W., Kim S.H. (2000) Using analytic network process and goal programming for interdependent information system project selection. Computers & Operations Research 27: 367–382. doi:10.1016/S0305-0548(99)00057-X

    Article  Google Scholar 

  14. Lee J.W., Kim S.H. (2001) An integrated approach for independent information system project selection. International Journal of Project Management 19: 111–118. doi:10.1016/S0263-7863(99)00053-8

    Article  Google Scholar 

  15. Liang S.L., Wang M.J. (1994) Personnel selection using fuzzy MCDM algorithm. European Journal of Operational Research 78: 22–33. doi:10.1016/0377-2217(94)90119-8

    Article  Google Scholar 

  16. Lievens F., Van Dam K., Anderson N. (2002) Recent trends and challenges in personnel selection. Personnel Review 31: 580–601. doi:10.1108/00483480210438771

    Article  Google Scholar 

  17. Meade L.M., Presley A. (2002) R&D project selection using the analytic network process. IEEE Transactions on Engineering Management 49: 59–66. doi:10.1109/17.985748

    Article  Google Scholar 

  18. Meade L.M., Sarkis J. (1998) Strategic analysis of logistics and supply chain management systems using the analytical network process. Transportation research Part E. Logistics and Transportation Review 34: 201–215. doi:10.1016/S1366-5545(98)00012-X

    Article  Google Scholar 

  19. Meade L.M., Sarkis J. (1999) Analyzing organizational project alternatives for agile manufacturing processes: An analytical network approach. International Journal of Production Research 37: 241–261. doi:10.1080/002075499191751

    Article  Google Scholar 

  20. Miller G.M., Feinzig S. L. (1993) Fuzzy sets and personnel selection: Discussion and an application. Journal of Occupational and Organizational Psychology 66: 163–169

    Google Scholar 

  21. Mohanty R.P., Agarwal R., Choudhury A.K., Tiwari M.K. (2005) A fuzzy ANP-based approach to R&D project selection: A case study. International Journal of Production Research 43: 5199–5216. doi:10.1080/00207540500219031

    Article  Google Scholar 

  22. Olcer A.I. (2008) A hybrid approach for multi-objective combinatorial optimisation problems in ship design and shipping. Computers & Operations Research 35: 2760–2775. doi:10.1016/j.cor.2006.12.010

    Article  Google Scholar 

  23. Onüt, S., & Soner, S. (2007). Transshipment site selection using the AHP and TOPSIS approaches under fuzzy environment. Waste Management (New York, N.Y.) in press.

  24. Partovi F.Y., Corredoira R.A. (2002) Quality function deployment for the good of soccer. European Journal of Operational Research 137: 642–656. doi:10.1016/S0377-2217(01)00072-8

    Article  Google Scholar 

  25. Petrovic-Lazerevic S. (2001) Personnel selection fuzzy model. International Transactions in Operational Research 8: 89–105. doi:10.1111/1475-3995.00008

    Article  Google Scholar 

  26. Ravi V., Shankar R., Tiwari M.K. (2005) Analyzing alternatives in reverse logistics for end-of-life computers: ANP and balanced scorecard approach. Computers & Industrial Engineering 48: 327–356. doi:10.1016/j.cie.2005.01.017

    Article  Google Scholar 

  27. Robertson I.T., Smith B. (2001) Perseonnel selection. Journal of Occupational and Organizational Psychology 74: 441–472. doi:10.1348/096317901167479

    Article  Google Scholar 

  28. Saaty T.L. (1980) The analytic hierarchy process. McGraw-Hill, New York

    Google Scholar 

  29. Saaty T.L. (1996) Decision making with dependence and feedback: The analytic network process. RWS Publications, Pittsburgh

    Google Scholar 

  30. Saaty T.L., Takizawa M. (1986) Dependence and independence from linear hierarchies to nonlinear Networks. European Journal of Operational Research 26: 229–237. doi:10.1016/0377-2217(86)90184-0

    Article  Google Scholar 

  31. Shipley M.F., Korvin D.K., Obit R. (1991) A decision making model for multi-attribute problems incorporating uncertainty and bias measures. Computers & Operations Research 18: 335–342. doi:10.1016/0305-0548(91)90094-8

    Article  Google Scholar 

  32. Shyur H.-J. (2006) COTS evaluation using modified TOPSIS and ANP. Applied Mathematics and Computation 177: 251–259. doi:10.1016/j.amc.2005.11.006

    Article  Google Scholar 

  33. Shyur H.-J., Shih H.-S. (2006) A hybrid MCDM model for strategic vendor selection. Mathematical and Computer Modelling 44: 749–761. doi:10.1016/j.mcm.2005.04.018

    Article  Google Scholar 

  34. Tsou, C.-H. (2007). Multi-objective inventory planning using MOPSO and TOPSIS. Expert Systems with Applications, in press.

  35. Wang Y.M., Elhag T.M.S. (2006) Fuzzy TOPSIS method based on alpha level sets with an application to bridge risk assessment. Expert Systems with Applications 31: 309–319. doi:10.1016/j.eswa.2005.09.040

    Article  Google Scholar 

  36. Wang, Y.J. (2007). Applying FMCDM to evaluate financial performance of domestic airlines in Taiwan. Expert Systems with Applications, in press.

  37. Yüksel İ., Dağdeviren M. (2007) Using the analytic network process (ANP) in a SWOT analysis-A case study for a textile firm. Information Sciences 177: 3364–3382. doi:10.1016/j.ins.2007.01.001

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Metin Dağdeviren.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dağdeviren, M. A hybrid multi-criteria decision-making model for personnel selection in manufacturing systems. J Intell Manuf 21, 451–460 (2010). https://doi.org/10.1007/s10845-008-0200-7

Download citation

Keywords

  • Analytic network process
  • TOPSIS
  • Human resource management
  • Personnel selection
  • Multi criteria decision analysis