Skip to main content
Log in

An Ontology driven model for detection and classification of cardiac arrhythmias using ECG data

  • Published:
Journal of Intelligent Information Systems Aims and scope Submit manuscript

Abstract

Cardiac arrhythmias are not life-threatening straight away but can cause serious heart-related complications if not medically handled appropriately. An electrocardiogram (ECG) captures the heart’s electric activity and has widespread usage due to its easy deployment and non-invasive aspect. Arrhythmia classification through manual analysis of electrocardiogram (ECG) is troublesome, tedious, and prone to human errors that can lead to serious repercussions. Hence, it’s a more effective alternative to deploy computational techniques to automatically perform the classification. Traditional techniques are data-driven and require an immense amount of data to train and then perform identification. This paper presents an ontology-driven knowledge model to automatically diagnose arrhythmias based on the patient’s sensor-based ECG data. The proposed approach models the arrhythmia domain knowledge and the conceptual relationships relevant to classification of heartbeat into corresponding cardiac arrhythmias and to facilitate decision making with respect to the patients. The newly developed arrhythmia ontology consists of three different modules, each semantically annotating a different aspect of the arrhythmia detection process. A SWRL (Semantic Web Rule Language) based ontology classifier performs classification of patient’s ECG data into corresponding cardiac arrhythmia types. The constructed knowledge base is ontologically aligned with some benchmarked top-level ontologies that promotes the semantic interoperability across multiple domains. The resultant ontological model is validated with a real-world ECG dataset and compared with the existing approaches showing higher precision rate and comparable performance. The developed model establishes a standardized ontology, that promotes the exchange and shareability of consensual domain knowledge about arrhythmic conditions, supports information retrieval and knowledge discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The dataset(s) generated during and/or analysed during the current study are available in the [Physionet] repository, [https://www.physionet.org/content/mitdb/1.0.0/].

References

  • Atal, D. K., & Singh, M. (2020). Arrhythmia classification with ECG signals based on the optimization-enabled deep convolutional neural network. Computer Methods and Programs in Biomedicine, 196, 105607.

    Article  Google Scholar 

  • Anwar, S.M., Gul, M., Majid, M., & Alnowami, M. (2018). Arrhythmia Classification of ECG signals using hybrid features. Computational and Mathematical Methods in Medicine, 2018, 1380348.

    Article  MATH  Google Scholar 

  • Abdoli, M., Ahmadian, A., Karimifard, S., Sadoughi, H., & Rizi, F.Y. (2009). An efficient piecewise modeling of ECG signals based on critical samples using Hermitian basis functions. In 4th European conference of the international federation for medical and biological engineering (pp. 1188–1191). Berlin: Springer.

  • Ali, F., Kwak, D., Khan, P., Islam, S.R., Kim, K.H., & Kwak, K.S. (2017). Fuzzy ontology-based sentiment analysis of transportation and city feature reviews for safe traveling. Transportation Research Part C: Emerging Technologies, 77, 33–48.

    Article  Google Scholar 

  • Al Rahhal, M. M., Bazi, Y., AlHichri, H., Alajlan, N., Melgani, F., & Yager, R.R. (2016). Deep learning approach for active classification of electrocardiogram signals. Information Sciences, 345, 340–354.

    Article  Google Scholar 

  • Banerjee, S., & Singh, G.K. (2021). Deep neural network based missing data prediction of electrocardiogram signal using multiagent reinforcement learning. Biomedical Signal Processing and Control, 67, 102508.

    Article  Google Scholar 

  • Beers, M.H. (2001). The Merck manual of diagnosis and therapy. Whitehouse Station, N.J. : Merck Research Laboratories, division of Merck & Co., Inc., 1999.

  • Bennett, D.H. (2012). Bennett’s cardiac arrhythmias: practical notes on interpretation and treatment. S.H. pennefather, British Journal of Anaesthesia.

  • Bouchikhi, S., Boublenza, A., & Chikh, M.A. (2015). Discrete hidden Markov model classifier for premature ventricular contraction detection. International Journal of Biomedical Engineering and Technology, 17, 371–386.

    Article  Google Scholar 

  • Borgo, S., & Masolo, C. (2009). Foundational choices in DOLCE. In Handbook on ontologies, (Vol. 361–381 p. Berlin). Springer.

  • Brickley, D, & Miller, L. (2007). FOAF Vocabulary specification 0.91 W3C.

  • Breslin, J.G., Decker, S., Harth, A., & Bojars, U. (2006). SIOC: An approach to connect web-based communities. International Journal of Web Based Communities, 2, 133–142.

    Article  Google Scholar 

  • Chen, Y., Yu, C., Liu, X., Xi, T., Xu, G., Sun, Y., & Shen, B. (2021). PCLiON: An ontology for data standardization and sharing of prostate cancer associated lifestyles. International Journal of Medical Informatics, 145, 104332.

    Article  Google Scholar 

  • Castro-Lopez, O., Lopez-Barron, D.E., & Vega-Lopez, I.F. (2020). Next-generation heartbeat classification with a column-store DBMS and UDFs. Journal of Intelligent Information Systems, 54, 363–390.

    Article  Google Scholar 

  • Deng, Y., Gao, Z., Xu, S., Ren, P., Wen, Y., Mao, Y., & Li, Z. (2020). ST-Net: Synthetic ECG tracings for diagnosing various cardiovascular diseases. Biomedical Signal Processing and Control, 61, 101997.

    Article  Google Scholar 

  • Dokur, Z., & Tamer, O. (2001). ECG Beat classification by a novel hybrid neural network. Computer Methods and Programs in Biomedicine, 66, 167–181.

    Article  Google Scholar 

  • Dokur, Z., Olmez, T., & Yazgan, E. (1999). Comparision of discrete wavelet and fourier transform for ECG beat classification. Electronics Letters, 35, 1502–1504.

    Article  Google Scholar 

  • Fujita, H., & Cimr, D. (2019). Decision support system for arrhythmia prediction using convolutional neural network structure without preprocessing. Applied Intelligence, 49, 3383–3391.

    Article  Google Scholar 

  • Ferranti, N., Mouro, J.R., Mendonça, F.M., de Souza, J.F., & Soares, S.S.R.F. (2021). A framework for evaluating ontology meta-matching approaches. Journal of Intelligent Information Systems, 56, 207–231.

    Article  Google Scholar 

  • Goldberger, A.L., Amaral, L.A., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark, R.G., & Stanley, H.E. (2000). PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation, 101, e215–e220.

    Article  Google Scholar 

  • Goldberger, A.L., Amaral, L.A., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark, R.G., & Stanley, H.E. (2000). Physiobank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation, 101, e215–e220.

    Article  Google Scholar 

  • Guizzardi, G., & Halpin, T. (2008). Ontological foundations for conceptual modelling. Applied Ontology, 3, 1–12.

    Article  Google Scholar 

  • Hartmann, J., Spyns, P., Giboin, A., Maynard, D., Cuel, R., Suárez-Figueroa, M.C., & Sure, Y. (2005). D1. 2.3 Methods for ontology evaluation. EU-IST Network of Excellence (NoE) IST-2004-507482 KWEB Deliverable D.1.

  • Horrocks, I., Peter, F.P., Harold, B., Said, T., Benjamin, G., & Mike, D. (2004). SWRL: A Semantic web rule language combining OWL and ruleML. W3C Member Submission, 21, 1–31.

    Google Scholar 

  • Houssein, E.H., Ewees, A.A., & Abd ElAziz, M. (2018). Improving twin support vector machine based on hybrid swarm optimizer for heartbeat classification. Pattern Recognition and Image Analysis, 28, 243–253.

    Article  Google Scholar 

  • Hu, Y.H., Palreddy S., & Tompkins, W. (1997). A patient adaptable ECG beat classifier using a mixture of experts approach. IEEE Transactions on Biomedical Engineering, 44, 891–900.

    Article  Google Scholar 

  • Inan, O.T., Giovangrandi, L., & Kovacs, G.T.A. (2006). Robust neural-network-based classification of premature ventricular contractions using wavelet transform and timing interval features. IEEE Transactions on Biomedical Engineering, 53, 2507–2515.

    Article  Google Scholar 

  • Jung, H., & Kim, W. (2020). Automated conversion from natural language query to SPARQL query. Journal of Intelligent Information Systems, 55, 501–520.

    Article  Google Scholar 

  • Kiranyaz, S., Ince, T., Pulkkinen, J., & Gabbouj, M. (2011). Personalized long-term ECG classification: a systematic approach. Expert Systems with Applications, 38, 3220–3226.

    Article  Google Scholar 

  • LePendu, P., & Dou, D. (2011). Using ontology databases for scalable query answering, inconsistency detection, and data integration. Journal of Intelligent Information Systems, 37, 217–244.

    Article  Google Scholar 

  • Li, T., & Zhou, M. (2016). ECG Classification using wavelet packet entropy and random forests. Entropy, 18, 285.

    Article  Google Scholar 

  • Martis, R.J., Acharya, U.R., Mandana, K.M., Ray, A.K., & Chakraborty, C (2012). Application of principal component analysis to ECG signals for automated diagnosis of cardiac health. Expert Systems with Applications, 39, 11792–11800.

    Article  Google Scholar 

  • Martis, R.J., Acharya, U.R., Mandana, K.M., Ray, A.K., & Chakraborty, C. (2013). Cardiac decision making using higher order spectra. Biomedical Signal Processing and Control, 8, 193–203.

    Article  Google Scholar 

  • Mathunjwa, B.M., Lin, Y.T., Lin, C.H., Abbod, M.F., & Shieh, J.S. (2021). ECG Arrhythmia classification by using a recurrence plot and convolutional neural network. Biomedical Signal Processing and Control, 64, 102262.

    Article  Google Scholar 

  • Martínez-García, M., Valls, A., & Moreno, A. (2019). Inferring preferences in ontology-based recommender systems using WOWA. Journal of Intelligent Information Systems, 52, 393–423.

    Article  Google Scholar 

  • Martis, R.J., Acharya, U.R., Mandana, K.M., Ray, A.K., & Chakraborty, C. (2013). Cardiac decision making using higher order spectra. Biomedical Signal Processing and Control, 8, 193–203.

    Article  Google Scholar 

  • Minami, K.I., Nakajima, H., & Toyoshima, T. (1999). Real-time discrimination of ventricular tachyarrhythmia with fourier-transform neural network. IEEE Transactions on Biomedical Engineering, 46, 179–185.

    Article  Google Scholar 

  • Moody, G.B., & Mark, R.G. (2001). The impact of the MIT-BIH arrhythmia database. IEEE Engineering in Medicine and Biology Magazine, 20, 45–50.

    Article  Google Scholar 

  • Mondjar-Guerra, V., Novo, J., Rouco, J., Penedo, M.G., & Ortega, M. (2019). Heartbeat classification fusing temporal and morphological information of ECGs via ensemble of classifiers. Biomedical Signal Processing and Control, 47, 41–48.

    Article  Google Scholar 

  • Mustaqeem, A., Anwar, S.M., Khan, A.R., & Majid, M. (2017). A statistical analysis based recommender model for heart disease patients. International Journal of Medical Informatics, 108, 134–145.

    Article  Google Scholar 

  • Mustaqeem, A., Anwar, S.M., & Majid, M. (2018). Multiclass classification of cardiac arrhythmia using improved feature selection and SVM invariants. Computational and Mathematical Methods in Medicine, 2018, 7310496.

    Article  MathSciNet  MATH  Google Scholar 

  • Prineas, R.J., Crow, R.S., & Zhang, Z.M. (2009). The Minnesota code manual of electrocardiographic findings. Springer Science and Business Media, (p. 2010). London: Springer.

    Google Scholar 

  • Pławiak, P., & Acharya, U.R. (2020). Novel deep genetic ensemble of classifiers for arrhythmia detection using ECG signals. Neural Computing and Applications, 32, 11137–11161.

    Article  Google Scholar 

  • Sangaiah, A.K., Arumugam, M., & Bian, G.B. (2020). An intelligent learning approach for improving ECG signal classification and arrhythmia analysis. Artificial Intelligence in Medicine, 103, 101788.

    Article  Google Scholar 

  • Senhadji, L., Carrault, G., Bellanger, J.J., & Passariello, G. (1995). Comparing wavelet transforms for recognizing cardiac patterns. IEEE Engineering in Medicine and Biology Magazine, 14, 167–173.

    Article  Google Scholar 

  • Sayadi, O, Shamsollahi, M.B., & Clifford, G.D. (2010). Robust detection of premature ventricular contractions using a wave-based Bayesian framework. IEEE Transactions on Biomedical Engineering, 57, 353–362.

    Article  Google Scholar 

  • Shvaiko, P., & Euzenat, J. (2005). A survey of schema-based matching approaches. Journal on Data Semantics, IV, 146–171. Springer, Berlin, Heidelberg.

    MATH  Google Scholar 

  • Stearns, M.Q., Price, C., Spackman, K.A., & Wang, A.Y. (2001). SNOMED clinical terms: overview of the development process and project status. In Proceedings of the AMIA Symposium, 662, American Medical Informatics Association.

  • Sun, Y. (2001). Arrhythmia recognition from electrocardiogram using non-linear analysis and unsupervised clustering techniques, Ph.D. dissertation, Nanyang Technological University, 2001.

  • Tuncer, T., Dogan, S., Pławiak, P., & Acharya, U.R. (2019). Automated arrhythmia detection using novel hexadecimal local pattern and multilevel wavelet transform with ECG signals. Knowledge-Based Systems, 186, 104923.

    Article  Google Scholar 

  • Tantawi, M.M., Revett, K., Salem, A., & Tolba, M. F. (2013). Fiducial feature reduction analysis for electrocardiogram (ECG) based biometric recognition. Journal of Intelligent Information Systems, 40, 17–39.

    Article  Google Scholar 

  • The Dublin Core Metadata Element Set. (2007). Dublin core metadata initiative august.

  • Trahanias, P., & Skordalakis, E. (1990). Syntactic pattern recognition of the ECG. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12, 648–657.

    Article  Google Scholar 

  • Wang, X., Li, R., Wang, S., Shen, S., Zhang, W., Zhou, B., & Wang, Z. (2021). Automatic diagnosis of ECG disease based on intelligent simulation modeling. Biomedical Signal Processing and Control, 67, 102528.

    Article  Google Scholar 

  • Wang, X., Li, R., Wang, S., Shen, S., Zhang, W., Zhou, B., & Wang, Z. (2021). Automatic diagnosis of ECG disease based on intelligent simulation modeling. Biomedical Signal Processing and Control, 67, 102528.

    Article  Google Scholar 

  • Willems, J.L., & Lesaffre, E. (1987). Comparison of multigroup logistic and linear discriminant ECG and VCG classification. Journal of Electrocardiology, 20, 83–92.

    Article  Google Scholar 

  • Wheeler, T.S., Vallis, T.M., Giacomantonio, N.B., & Abidi, S.R. (2018). Feasibility and usability of an ontology-based mobile intervention for patients with hypertension. International Journal of Medical Informatics, 119, 8–16.

    Article  Google Scholar 

  • Wilk, S., Kezadri-Hamiaz, M., Amyot, D., Michalowski, W., Kuziemsky, C., Catal, N., & Giffen, R. (2020). An ontologyframework to support the dynamic formation of an interdisciplinary healthcare team. International Journal of Medical Informatics, 136, 104075.

    Article  Google Scholar 

  • Yildirim, O., Talo, M., Ciaccio, E.J., San Tan, R., & Acharya, U.R. (2020). Accurate deep neural network model to detect cardiac arrhythmia on more than 10,000 individual subject ECG records. Computer Methods and Programs in Biomedicine, 197, 105740.

    Article  Google Scholar 

  • Zhang, Z., Dong, J., Luo, X., Choi, K.S., & Wu, X. (2014). Heartbeat classification using disease-specific feature selection. Computers in Biology and Medicine, 46, 79–89.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diksha Hooda.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hooda, D., Rani, R. An Ontology driven model for detection and classification of cardiac arrhythmias using ECG data. J Intell Inf Syst 58, 405–431 (2022). https://doi.org/10.1007/s10844-021-00685-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10844-021-00685-2

Keywords

Navigation