Recent advances in mining patterns from complex data

This is a preview of subscription content, log in to check access.


  1. Diamantini, C., Genga, L., & Potena, D. (2016). Behavioral process mining for unstructured processes. J. Intell. Inf. Syst. doi:10.1007/s10844-016-0394-7.

  2. Ferilli, S. (2016). Predicate invention-based specialization in inductive logic programming. J. Intell. Inf. Syst. doi:10.1007/s10844-016-0412-9.

  3. Madjarov, G., Gjorgjevikj, D., Dimitrovski, I., & Dzeroski, S. (2016). The use of data-derived label hierarchies in multi-label classification. J. Intell. Inf. Syst. doi:10.1007/s10844-016-0405-8.

  4. Minervini, P., d’Amato, C., & Fanizzi, N. (2016). Efficient energy-based embedding models for link prediction in knowledge graphs. J. Intell. Inf. Syst. doi:10.1007/s10844-016-0414-7.

  5. Saia, R., Boratto, L., & Carta, S. (2016). A semantic approach to remove incoherent items from a user profile and improve the accuracy of a recommender system. J. Intell. Inf. Syst. doi:10.1007/s10844-016-0406-7.

  6. Samet, A., Lefevre, E., & Yahia, S.B. (2016). Evidential data mining: Precise support and confidence. J. Intell. Inf. Syst. doi:10.1007/s10844-016-0396-5.

  7. Sen, E., Toroslu, I.H., & Karagoz, P. (2016). Improving the prediction of page access by using semantically enhanced clustering. J. Intell. Inf. Syst. doi:10.1007/s10844-016-0398-3.

Download references

Author information



Corresponding author

Correspondence to Annalisa Appice.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Appice, A., Ceci, M., Loglisci, C. et al. Recent advances in mining patterns from complex data. J Intell Inf Syst 47, 1–3 (2016).

Download citation


  • Data mining
  • Complex data
  • Complex pattern discovery