Journal of Intelligent Information Systems

, Volume 47, Issue 1, pp 111–134 | Cite as

A semantic approach to remove incoherent items from a user profile and improve the accuracy of a recommender system



Recommender systems usually suggest items by exploiting all the previous interactions of the users with a system (e.g., in order to decide the movies to recommend to a user, all the movies she previously purchased are considered). This canonical approach sometimes could lead to wrong results due to several factors, such as a change in user preferences over time, or the use of her account by third parties. This kind of incoherence in the user profiles defines a lower bound on the error the recommender systems may achieve when they generate suggestions for a user, an aspect known in literature as magic barrier. This paper proposes a novel dynamic coherence-based approach to define the user profile used in the recommendation process. The main aim is to identify and remove, from the previously evaluated items, those not semantically adherent to the others, in order to make a user profile as close as possible to the user’s real preferences, solving the aforementioned problems. Moreover, reshaping the user profile in such a way leads to great advantages in terms of computational complexity, since the number of items considered during the recommendation process is highly reduced. The performed experiments show the effectiveness of our approach to remove the incoherent items from a user profile, increasing the recommendation accuracy.


User profiling Semantic analysis Magic barrier Accuracy 


  1. Addis, A., Armano, G., Giuliani, A., & Vargiu, E. (2010). A recommender system based on a generic contextual advertising approach. In Proceedings of the 15th IEEE symposium on computers and communications, ISCC 2010 (pp. 859–861). Riccione: IEEE.Google Scholar
  2. Addis, A., Armano, G., & Vargiu, E. (2010). Assessing progressive filtering to perform hierarchical text categorization in presence of input imbalance. In A.L.N. Fred, & J. Filipe (Eds.), KDIR 2010 - Proceedings of the international conference on knowledge discovery and information retrieval (pp. 14–23). Valencia: SciTePress.Google Scholar
  3. Amatriain, X, Pujol, JM, & Oliver, N (2009). I like it... I like it not: Evaluating user ratings noise in recommender systems. In Houben, G., McCalla, G.I., Pianesi, F., & Zancanaro, M. (Eds.) Proceedings of the 17th international conference, user modeling, adaptation, and personalization UMAP, 2009, formerly UM and AH. Lecture Notes in Computer Science, (Vol. 5535 pp. 247–258). Trento: Springer.Google Scholar
  4. Amatriain, X., Pujol, J. M., Tintarev, N., & Oliver, N. (2009). Rate it again: increasing recommendation accuracy by user re-rating. In L.D. Bergman, A. Tuzhilin, R.D. Burke, A. Felfernig, & L. Schmidt-Thieme (Eds.) , Proceedings of the 2009 ACM Conference on Recommender Systems, RecSys 2009 (pp. 173–180). New York: ACM.Google Scholar
  5. Armano, G., Giuliani, A., & Vargiu, E. (2011a). Semantic enrichment of contextual advertising by using concepts. In J. Filipe, & A.L.N. Fred (Eds.) , KDIR 2011 - Proceedings of the International Conference on Knowledge Discovery and Information Retrieval (pp. 232–237). Paris: SciTePress.Google Scholar
  6. Armano, G., Giuliani, A., & Vargiu, E. (2011b). Studying the impact of text summarization on contextual advertising. In F. Morvan, A.M. Tjoa, & R. Wagner (Eds.) , 2011 database and expert systems applications, DEXA, International workshops (pp. 172–176). Toulouse: IEEE Computer Society.Google Scholar
  7. Armano, G., & Vargiu, E. (2010). A unifying view of contextual advertising and recommender systems. In A.L.N. Fred, & J. Filipe (Eds.) KDIR 2010 - Proceedings of the international conference on knowledge discovery and information retrieval (pp. 463–466). Valencia: SciTePress.Google Scholar
  8. Asnicar, F. A., & Tasso, C. (1997). ifweb: a prototype of user model-based intelligent agent for document filtering and navigation in the world wide web. In Proceedings of workshop adaptive systems and user modeling on the world wide web’at 6th international conference on user modeling, UM97, Chia Laguna (pp. 3–11). Sardinia.Google Scholar
  9. Balabanovic, M., & Shoham, Y. (1997). Content-based, collaborative recommendation. Communications of the ACM, 40(3), 66–72. doi: 10.1145/245108.245124.CrossRefGoogle Scholar
  10. Bellogín, A., Said, A., & de Vries, A.P. (2014). The magic barrier of recommender systems - no magic, just ratings. In V. Dimitrova, T. Kuflik, D. Chin, F. Ricci, P. Dolog, & G. Houben (Eds.) , Proceedings of the 22nd international conference, User modeling, adaptation, and personalization UMAP 2014. Lecture Notes in Computer Science, (Vol. 8538 pp. 25–36). Aalborg: Springer.Google Scholar
  11. Billsus, D., & Pazzani, M.J. (1999). A hybrid user model for news story classification. In Proceedings of the seventh international conference on user modeling, UM ’99 (pp. 99–108). Secaucus: Springer-Verlag New York, Inc. 317328.317338.
  12. Budzik, J., & Hammond, K.J. (2000). User interactions with everyday applications as context for just-in-time information access. New York: ACM.CrossRefGoogle Scholar
  13. Capelle, M., Frasincar, F., Moerland, M., & Hogenboom, F. (2012). Semantics-based news recommendation. In Proceedings of the 2Nd international conference on web intelligence, mining and semantics, WIMS ’12 (pp. 27:1–27:9). New York: ACM.Google Scholar
  14. Capelle, M., Hogenboom, F., Hogenboom, A., & Frasincar, F. (2013). Semantic news recommendation using wordnet and bing similarities. In Proceedings of the 28th annual ACM symposium on applied computing, SAC ’13 (pp. 296–302). New York: ACM.Google Scholar
  15. Chirita, P.A., Nejdl, W., Paiu, R., & Kohlschütter, C. (2005). Using odp metadata to personalize search. In Proceedings of the 28th annual international ACM SIGIR conference on research and development in information retrieval, SIGIR ’05 (pp. 178–185). New York: ACM.Google Scholar
  16. Dennai, A., & Benslimane, S.M. (2013). Toward an update of a similarity measurement for a better calculation of the semantic distance between ontology concepts. In The second international conference on informatics engineering & information science (ICIEIS2013) (pp. 197–207): The Society of Digital Information and Wireless Communication.Google Scholar
  17. Fellbaum, C. (1998). WordNet: An electronic lexical database: Bradford Books.Google Scholar
  18. Finkelstein, L., Gabrilovich, E., Matias, Y., Rivlin, E., Solan, Z., Wolfman, G., & Ruppin, E. (2002). Placing search in context: The concept revisited. ACM Transactions on Information Systems, 20(1), 116– 131.CrossRefGoogle Scholar
  19. Herlocker, J.L., Konstan, J.A., Borchers, A., & Riedl, J. (1999). An algorithmic framework for performing collaborative filtering. In SIGIR (pp. 230–237): ACM.Google Scholar
  20. Herlocker, J.L., Konstan, J.A., Terveen, L.G., & Riedl, J. (2004). Evaluating collaborative filtering recommender systems. ACM Transactions on Information Systems, 22(1), 5–53.CrossRefGoogle Scholar
  21. Hill, W. C., Stead, L., Rosenstein, M., & Furnas, G. W. (1995). Recommending and evaluating choices in a virtual community of use. In I.R. Katz, R.L. Mack, L. Marks, M.B. Rosson, & J. Nielsen (Eds.) , CHI ’95 conference proceedings Human factors in computing systems (pp. 194–201). Denver: ACM/Addison-Wesley.Google Scholar
  22. Jiang, J.J., & Conrath, D.W. (1997). Semantic similarity based on corpus statistics and lexical taxonomy arXiv preprint cmp-lg/9709008.Google Scholar
  23. Karypis, G. (2001). Evaluation of item-based top-n recommendation algorithms. In Proceedings of the 2001 ACM CIKM international conference on information and knowledge management. doi: 10.1145/502585.502627 (pp. 247–254). Atlanta: ACM,
  24. Kelly, D., & Teevan, J. (2003). Implicit feedback for inferring user preference: a bibliography. SIGIR Forum, 37(2), 18–28.CrossRefGoogle Scholar
  25. Koren, Y., & Bell, R.M. (2015). Advances in collaborative filtering. In F. Ricci, L. Rokach & B. Shapira (Eds.), Recommender systems handbook. doi: 10.1007/978-1-4899-7637-6_3 (pp. 77–118): Springer,
  26. Lam, W., Mukhopadhyay, S., Mostafa, J., & Palakal, M.J. (1996). Detection of shifts in user interests for personalized information filtering (pp. 317–325): SIGIR.Google Scholar
  27. Leacock, C., & Chodorow, M. (1998). Combining local context and wordnet similarity for word sense identification. In C. Fellbaum (Ed.) WordNet: An electronic lexical database (pp. 305–332): MIT Press.Google Scholar
  28. Li, L., Yang, Z., Wang, B., & Kitsuregawa, M. (2007). Dynamic adaptation strategies for long-term and short-term user profile to personalize search. In G. Dong, X. Lin, W. Wang, Y. Yang, & J.X. Yu (Eds.), Advances in data and web management, joint 9th asia-pacific web conference, APWeb 2007, and 8th International Conference, on Web-Age Information Management, WAIM 2007. Proceedings, Lecture Notes in Computer Science, (Vol. 4505 pp. 228–240). Huang Shan: Springer.Google Scholar
  29. Lieberman, H. (1995). Letizia: An agent that assists web browsing. In Proceedings of the 14th International Joint Conference on Artificial Intelligence - Volume 1, IJCAI’95 (pp. 924–929). San Francisco: Morgan Kaufmann Publishers Inc.
  30. Lin, D. (1998). An information-theoretic definition of similarity. In Shavlik, J.W. (Ed.) Proceedings of the fifteenth international conference on machine learning (ICML 1998) (pp. 296–304). Madison: Morgan Kaufmann.Google Scholar
  31. Linden, G., Smith, B., & York, J. (2003). Industry report: recommendations: Item-to-item collaborative filtering. IEEE Distributed Systems Online, 4(1).
  32. Liu, F., Yu, C., & Meng, W. (2002). Personalized web search by mapping user queries to categories. In Proceedings of the Eleventh International Conference on Information and Knowledge Management, CIKM ’02 (pp. 558–565). New York: ACM.Google Scholar
  33. Lops, P., de Gemmis, M., & Semeraro, G. (2011). Content-based recommender systems: State of the art and trends. In F. Ricci, L. Rokach, B. Shapira & P.B. Kantor (Eds.), Recommender systems handbook (pp. 73–105). Springer.Google Scholar
  34. Ma, Z., Pant, G., & Sheng, O.R.L. (2007). Interest-based personalized search. ACM Transactions on Information Systems, 25(1).Google Scholar
  35. Ning, X., Desrosiers, C., & Karypis, G. (2015). A comprehensive survey of neighborhood-based recommendation methods. In F. Ricci, L. Rokach, & B. Shapira (Eds.), Recommender systems handbook (pp. 37– 76). Springer. doi: 10.1007/978-1-4899-7637-6_2.
  36. Owen, S., Anil, R., Dunning, T., & Friedman, E. (2011). Mahout in action. Greenwich: Manning Publications Co.Google Scholar
  37. Pazzani, M., Muramatsu, J., & Billsus, D. (1996). Syskill & webert: Identifying interesting web sites. In Proceedings of the thirteenth national conference on artificial intelligence - volume 1, AAAI’96 (pp. 54–61): AAAI Press.
  38. Pazzani, M.J., & Billsus, D. (2007). Content-based recommendation systems. In P. Brusilovsky, A. Kobsa, & W. Nejdl (Eds.), The Adaptive Web (pp. 325–341). Berlin: Springer.
  39. Pedersen, T., Patwardhan, S., & Michelizzi, J. (2004). Wordnet similarity: Measuring the relatedness of concepts. In Demonstration Papers at HLT-NAACL 2004, HLT-NAACL–Demonstrations ’04 (pp. 38–41). Stroudsburg: Association for Computational Linguistics.Google Scholar
  40. Pretschner, A., & Gauch, S. (1999). Ontology based personalized search. In 11th IEEE international conference on tools with artificial intelligence, ICTAI ’99. doi: 10.1109/TAI.1999.809829 (pp. 391–398). Chicago: IEEE Computer Society.
  41. Resnik, P. (1995). Using information content to evaluate semantic similarity in a taxonomy. In Proceedings of the 14th international joint conference on artificial intelligence - Volume 1, IJCAI’95 (pp. 448–453). San Francisco: Morgan Kaufmann Publishers Inc.Google Scholar
  42. Ricci, F., Rokach, L., & Shapira, B. (2011). Introduction to recommender systems handbook. In F. Ricci, L. Rokach, B. Shapira, & P.B. Kantor (Eds.), Recommender systems handbook (pp. 1–35). Springer.Google Scholar
  43. Saia, R., Boratto, L., & Carta, S. (2014). Semantic coherence-based user profile modeling in the recommender systems context. In Proceedings of the 6th international conference on knowledge discovery and information retrieval, KDIR 2014 (pp. 154–161). Rome: SciTePress.Google Scholar
  44. Said, A., Jain, B. J., Narr, S., & Plumbaum, T. (2012). Users and noise: The magic barrier of recommender systems. In J. Masthoff, B. Mobasher, M.C. Desmarais, & R. Nkambou (Eds.) , Proceedings of the 20th international conference, user modeling, adaptation, and personalization - UMAP 2012. Lecture Notes in Computer Science, (Vol. 7379 pp. 237–248). Montreal: Springer.Google Scholar
  45. Said, A., Jain, B. J., Narr, S., Plumbaum, T., Albayrak, S., & Scheel, C. (2012). Estimating the magic barrier of recommender systems: a user study. In W.R. Hersh, J. Callan, Y. Maarek, & M. Sanderson (Eds.), The 35th international ACM SIGIR conference on research and development in Information Retrieval, SIGIR ’12 (pp. 1061–1062). Portland: ACM.Google Scholar
  46. Salton, G., Wong, A., & Yang, C. S. (1975). A vector space model for automatic indexing. Communications of the ACM, 18(11), 613–620.CrossRefMATHGoogle Scholar
  47. Sarwar, B.M., Karypis, G., Konstan, J.A., & Riedl, J. (2001). Item-based collaborative filtering recommendation algorithms. In V.Y. Shen, N. Saito, M.R. Lyu, & M.E. Zurko (Eds.) ,Proceedings of the tenth international world wide web conference, WWW 10. doi: 10.1145/371920.372071 (pp. 285–295). Hong Kong: ACM.
  48. Schafer, J.B., Konstan, J.A., & Riedl, J. (1999). Recommender systems in e-commerce. In Proceedings of the 1st ACM conference on Electronic commerce (pp. 158–166).Google Scholar
  49. Schickel-Zuber, V., & Faltings, B. (2006). Inferring user’s preferences using ontologies. In Proceedings, the twenty-first national conference on artificial intelligence and the eighteenth innovative applications of artificial intelligence conference (pp. 1413–1418). Boston: AAAI Press.Google Scholar
  50. Shen, X., Tan, B., & Zhai, C. (2005). Implicit user modeling for personalized search. In O. Herzog, H.J. Schek, N. Fuhr,A. Chowdhury, & W. Teiken (Eds.), Proceedings of the 2005 ACM CIKM international conference on information and knowledge management (pp. 824–831). Bremen : ACM.Google Scholar
  51. Stilo, G., & Velardi, P. (2014a). Temporal semantics: Time-varying hashtag sense clustering. In Knowledge engineering and knowledge management, Lecture Notes in Computer Science, (Vol. 8876 pp. 563–578): Springer International Publishing.Google Scholar
  52. Stilo, G., & Velardi, P. (2014b). Time makes sense: Event discovery in twitter using temporal similarity. In Proceedings of the 2014 IEEE/WIC/ACM international joint conferences on web intelligence (WI) and intelligent agent technologies (IAT) - Volume 02, WI-IAT ’14. doi: 10.1109/WI-IAT.2014.97 (pp. 186–193). Washington: IEEE Computer Society.
  53. Stilo, G., & Velardi, P. (2015). Efficient temporal mining of micro-blog texts and its application to event discovery. Data Mining and Knowledge Discovery. doi: 10.1007/s10618-015-0412-3.MathSciNetGoogle Scholar
  54. Su, X., & Khoshgoftaar, T.M. (2009). A survey of collaborative filtering techniques. Advances Artificial Intellegence. doi: 10.1155/2009/421425.Google Scholar
  55. Toutanova, K., Klein, D., Manning, C. D., & Singer, Y. (2003). Feature-rich part-of-speech tagging with a cyclic dependency network. Stroudsburg: Association for Computational Linguistics.CrossRefGoogle Scholar
  56. Vargiu, E., Giuliani, A., & Armano, G. (2013). Improving contextual advertising by adopting collaborative filtering. ACM Transactions on the Web, 7(3), 13:1–13:22.CrossRefGoogle Scholar
  57. Wei, C., Khoury, R., & Fong, S. (2014). Recommendation systems for web 2.0 marketing. In K. Yada (Ed.), Data mining for service, studies in big data, (Vol. 3 pp. 171–196). Berlin: Springer.Google Scholar
  58. Widyantoro, D.H., Ioerger, T.R., & Yen, J. (2001). Learning user interest dynamics with a three-descriptor representation. JASIST, 52(3), 212–225.CrossRefGoogle Scholar
  59. Wu, Z., & Palmer, M. (1994). Verbs semantics and lexical selection. Stroudsburg: Association for Computational Linguistics.CrossRefGoogle Scholar
  60. Zeb, M., & Fasli, M. (2011). Adaptive user profiling for deviating user interests. In Computer science and electronic engineering conference (CEEC). 3rd. doi: 10.1109/CEEC.2011.5995827 (pp. 65–70).

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Roberto Saia
    • 1
  • Ludovico Boratto
    • 1
  • Salvatore Carta
    • 1
  1. 1.Dipartimento di Matematica e InformaticaUniversità di CagliariCagliariItaly

Personalised recommendations