Skip to main content

A hierarchical multi-criteria sorting approach for recommender systems

An Erratum to this article was published on 04 September 2015

Abstract

Classification problems refer to the assignment of alternatives to predefined categories. In this work we focus on ordered classification, called sorting, in which the predefined categories indicate several degrees of interest or suitability of alternatives for a certain user. The assignment of alternatives is based on multiple conflicting criteria. This multi-criteria sorting approach is specially interesting for recommender systems aimed at finding the most suitable alternatives for each user. First, we study the ELECTRE-TRI-B sorting method, which follows the outranking approach based on comparing the evaluations of alternatives with the profile limits separating the categories. The complexity of some recommenders systems requires the extension of the classical ELECTRE-TRI-B method to manage a taxonomical organization of the set of criteria. In this paper we consider a set of criteria in the form of a hierarchy. The intermediate criteria in such a hierarchy correspond to different aspects of the recommendation procedure, such as content, context or cost. At each of these criteria, a sorting problem must be solved. Therefore, we propose extending ELECTRE-TRI-B to handle assignments of alternatives on several levels of the hierarchy. A hierarchical procedure for sorting is proposed, called ELECTRE-TRI-B-H. Secondly, the paper explains the integration of ELECTRE-TRI-B-H into a recommender system of touristic activities related to wine, called GoEno-Tur. This system is developed for the region of Tarragona, Catalonia (Spain), which is a well-recognized area of wine and cava production.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  • Adomavicius, G., Manouselis, N., & Kwon, Y. (2011). Multi-Criteria Recommender Systems. In Ricci, F., Rokach, L., Shapira, B, & Kantor, P. B. (Eds.), Recommender Systems Handbook, (pp. 769–803). US: Springer.

    Chapter  Google Scholar 

  • Arondel, C., & Girardin, P. (2000). Sorting cropping systems on the basis of their impact on groundwater quality. European Journal of Operational Research, 127, 467–482.

    Article  MATH  Google Scholar 

  • Bana e Costa, C., & Vansnick, J. (1999). The MACBETH Approach: Basic Ideas, Software, and an Application. In Meskens, N., & Roubens, M. (Eds.), Advances in Decision Analysis, Mathematical Modelling: Theory and Applications, vol 4, (pp. 131–157). Netherlands: Springer.

    Chapter  Google Scholar 

  • Borràs, J., Moreno, A., Valls, A., Ferré, M., Ciurana, E., Salvat, J., Russo, A., & Anton-Clavé, S. (2012a). Uso de técnicas de inteligencia artificial para hacer recomendaciones enoturística personalizadas en la provincia de tarragona. In IX Congreso Nacional de Turismo y Tecnologías de la Información y las Comunicaciones (TURITEC) (pp. 217–230).

  • Borràs, J., Valls, A., Moreno, A., & Isern, D. (2012b). Ontology-based management of uncertain preferences in user profiles. In 14th International Conference on Information Processing and Management of Uncertainty in Knowledge-based Systems (IPMU) (pp. 127–136).

  • Borràs, J., Moreno, A., & Valls, A. (2014). Intelligent tourism recommender systems: A survey. Expert Systems with Applications, 41, 7370–7389.

    Article  Google Scholar 

  • Brito, A., de Almeida, A., & Mota, C. (2010). A multicriteria model for risk sorting of natural gas pipelines based on ELECTRE TRI integrating Utility Theory. European Journal of Operational Research, 200, 812–821.

    Article  MATH  Google Scholar 

  • Cailloux, O., Meyer, P., & Mousseau, V. (2012). Eliciting Electre Tri category limits for a group of decision makers. European Journal of Operational Research, 223, 133–140.

    MathSciNet  Article  MATH  Google Scholar 

  • Cailloux, O., Mayag, B., Meyer, P., & Mousseau, V. (2013). Operational tools to build a multicriteria territorial risk scale with multiple stakeholders. Reliability Engineering & System Safety, 120, 88–97.

    Article  Google Scholar 

  • Chen, S., Liu, J., Wang, H., Xu, Y., & Augusto, J. (2014). A linguistic multi-criteria decision making approach based on logical reasoning. Information Sciences, 258, 266–276.

    MathSciNet  Article  MATH  Google Scholar 

  • Cloquell-Ballester, V., Monterde-Díaz, R., Cloquell-Ballester, V., & Santamarina-Siurana, M. (2007). Systematic comparative and sensitivity analyses of additive and outranking techniques for supporting impact significance assessments. Environmental Impact Assessment Review, 27, 62–83.

    Article  Google Scholar 

  • Corrente, S., Greco, S., Kadzinski, M., & Slowinski, R. (2013). Robust ordinal regression in preference learning and ranking. Machine Learning, 93(2–3), 381–422.

    MathSciNet  Article  MATH  Google Scholar 

  • De Gemmis, M., Iaquinta, L., Lops, P., Musto, C., Narducci, F., & Semeraro, G. (2009). Preference learning in recommender systems. In Preference Learning (PL-09) ECML/PKDD-09 Workshop.

  • Deuk Hee, P., Hyea Kyeong, K., Il Young, C., & Jae Kyeong, K. (2012). A literature review and classification of recommender systems research. Expert Systems with Applications, 39(11), 10,059–10,072.

    Article  Google Scholar 

  • Doumpos, M., & Grigoroundis, E. (2013). Multicriteria Decision Aid and Artificial Intelligence. Wiley.

  • Doumpos, M., & Zopounidis, C. (2011). Preference disaggregation and statistical learning for multicriteria decision support: A review. European Journal of Operational Research, 209(3), 203–214.

    MathSciNet  Article  MATH  Google Scholar 

  • Ehrgott, M., Figueira, J., & Greco, S. (2010). Trends in Multiple Criteria Decision Analysis. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Fenza, G., Fischetti, E., Fumo, D., & Loia, V. (2011). A hybrid context aware system for tourist guidance based on collaborative filtering. In Fuzzy Systems (FUZZ), 2011 IEEE International Conference (pp. 131–138).

  • Figueira, J., & Roy, B. (2002). Determining the weights of criteria in the electre type methods with a revised simos’ procedure. European Journal of Operational Research, 139(2), 317–326.

    MathSciNet  Article  MATH  Google Scholar 

  • Gavalas, D., Konstantopoulos, C., Mastakas, K., & Pantziou, G. (2014). Mobile recommender systems in tourism. Journal of Network and Computer Applications, 39, 319–333.

    Article  Google Scholar 

  • Grabisch, M., Kojadinovic, I., & Meyer, P. (2008). A review of methods for capacity identification in Choquet integral based multi-attribute utility theory: Applications of the Kappalab R package. European Journal of Operational Research, 186(2), 766–785.

    MathSciNet  Article  MATH  Google Scholar 

  • Hdioud, F., Frikh B., & Ouhbi, B. (2013). Multi-criteria recommender systems based on multi-attribute decision making. In Proceedings of International Conference on Information Integration and Web-based Applications & Services, ACM, New York, NY, USA, IIWAS ’13 (pp. 203:203–203:210).

  • Huang, S. (2011). Designing utility-based recommender systems for e-commerce: Evaluation of preference-elicitation methods. Electronic Commerce Research and Applications, 10, 398–407.

    Article  Google Scholar 

  • Lakiotaki, K., Matsatsinis, N., & Tsoukias, A. (2011). Multicriteria User Modeling in Recommender Systems. IEEE Intelligent Systems, 26(2), 64–76.

    Article  Google Scholar 

  • Law, R., Qi, S., & Buhalis, D. (2010). Progress in tourism management: A review of website evaluation in tourism research. Tourism Management, 31(3), 297–313.

    Article  Google Scholar 

  • Li, D., Liu, C., & Gan, W. (2009). A new cognitive model: Cloud model. International Journal of Intelligent Systems, 24, 357–375.

    Article  MATH  Google Scholar 

  • Liu, L., Mehandjiev, N., & Xu, D. (2011). Multi-criteria Service Recommendation Based on User Criteria Preferences. In Proceedings of the Fifth ACM Conference on Recommender Systems, ACM, New York, NY, USA, RecSys ’11 (pp. 77–84).

  • Lops, P., De Gemmis, M., Semeraro, G., Musto, C., & Narducci, F. (2013). Content-based and collaborative techniques for tag recommendation: An empirical evaluation. Journal of Intelligent Information Systems, 40, 41–61.

    Article  Google Scholar 

  • Mandl, M., Felfernig, A., Teppan, E., & Schubert, M. (2011). Consumer decision making in knowledge-based recommendation. Journal of Intelligent Information Systems, 37, 1–22.

    Article  Google Scholar 

  • Manjeevan, S., Chee Peng, L., Wei Shiung, L., Einly, L., & Chu Kiong, L. (2015). Classification of electrocardiogram and auscultatory blood pressure signals using machine learning models. Expert Systems with Applications, 42(7), 3643–3652.

    Article  Google Scholar 

  • Matsatsinis, N., Doumpos, M., & Zopounidis, C. (1997). Knowledge acquisition and representation for expert systems in the field of financial analysis. Expert Systems with Applications, 12, 247–262.

    Article  Google Scholar 

  • Mikeli, A., Sotiros, D., Apostolou, D., & Despotis, D. (2013). A multi-criteria recommender system incorporating intensity of preferences. In Information, Intelligence, Systems and Applications (IISA), 2013 Fourth International Conference on (pp. 1–6).

  • Moreno, A., Valls, A., Isern, D., Marin, L., & Borràs, J. (2013). SigTur/E-Destination: Ontology-based personalized recommendation of Tourism and Leisure Activities. Engineering Applications of Artificial Intelligence, 26, 633–651.

    Article  Google Scholar 

  • Moreno, A., Valls, A., Martínez, S., Vicient, C., Marin, L., & Mata, F. (2015). Personalised recommendations based on novel semantic similarity and clustering procedures. AI Commun, 28(1), 127–142.

    MathSciNet  Google Scholar 

  • Mousseau, V., Slowinski, R., & Zielniewicz, P. (2000). A user-oriented implementation of the ELECTRE-TRI method integrating preference elicitation support. Computers and Operations Research, 27, 757–777.

  • Mustajoki, J. (2012). Effects of imprecise weighting in hierarchical preference programming. European Journal of Operational Research, 218, 193–201.

    MathSciNet  Article  MATH  Google Scholar 

  • Perny, P., & Pomerol, J. (1999). Use of artificial intelligence in mcdm. In Gal, T., Stewart, T., & Hanne, T. (Eds.) Multicriteria Decision Making: Advances in MCMD Models, Algorithms, Theory, and Applications, vol (pp. 1–43).

  • Qiang, W.J., Peng, L., Yu Z.H., & Hong, C.X. (2014). Method of multi-criteria group decision-making based on cloud aggregation operators with linguistic information. Information Sciences, 1, 177–191.

  • Roy, B. (1996). Multicriteria Methodology for Decision Analysis. Dordrecht: Kluwer Academic Publishers.

    Book  Google Scholar 

  • Saaty, R. (1987). The analytic hierarchy process-what it is and how it is used. Mathematical Modelling, 9(3-5), 161–176.

    MathSciNet  Article  MATH  Google Scholar 

  • Sánchez-Lozano, J., Henggeler Antunes, C., García-Cascales, M., & Dias, L. (2014). GIS-based photovoltaic solar farms site selection using ELECTRE-TRI: Evaluating the case for Torre Pacheco, Murcia, Southeast of Spain. Renewable Energy, 66, 478–494.

    Article  Google Scholar 

  • Silva, S., Alçada-Almeida, L., & Dias, L. (2014). Biogas plants site selection integrating Multicriteria Decision Aid methods and GIS techniques: A case study in a Portuguese region. Biomass and Bioenergy, 71, 58–68.

    Article  Google Scholar 

  • Siskos, Y., Grigoroudis, E., & Matsatsinis, N. (2005). Uta methods. Multiple Criteria Decision Analysis: State of the Art Surveys, International Series in Operations Research & Management Science, vol 78, (pp. 297–334). New York: Springer.

  • Sobrie, O., Mousseau, V., & Pirlot, M. (2013). Learning a Majority Rule Model from Large Sets of Assignment Examples. In Perny, P., Pirlot, M., & Tsoukiàs, A. (Eds.), Algorithmic Decision Theory, Lecture Notes in Computer Science, vol 8176, (pp. 336–350). Berlin Heidelberg: Springer.

    Google Scholar 

  • Xidonas, P., Mavrotas, G., & Psarras, J. (2009). A multicriteria methodology for equity selection using financial analysis. Computers and Operations Research, 36, 3187–3203.

    Article  MATH  Google Scholar 

  • Yu, W. (1992). Electre tri : Aspects mthodologiques et manuel dutilisation. Document du LAMSADE, No.74, Universit Paris-Dauphine.

  • Zopounidis, C., & Doumpos, M. (2002). Multicriteria classification and sorting methods: A literature review. European Journal of Operational Research, 138, 229–246.

    MathSciNet  Article  MATH  Google Scholar 

Download references

Acknowledgments

This project has been funded by the Spanish research project SHADE (TIN-2012-34369: Semantic and Hierarchical Attributes in Decision Making). Luis Del Vasto-Terrientes is supported by a FI predoctoral grant from Generalitat de Catalunya (2014 FI_B200023). Joan Borràs is affiliated to the Science and Technology Park for Tourism and Leisure (PCT) in Vila-Seca, Catalonia (Spain). The authors have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Del Vasto-Terrientes.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vasto-Terrientes, L.D., Valls, A., Zielniewicz, P. et al. A hierarchical multi-criteria sorting approach for recommender systems. J Intell Inf Syst 46, 313–346 (2016). https://doi.org/10.1007/s10844-015-0362-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10844-015-0362-7

Keywords

  • Recommender systems
  • Classification
  • Sorting
  • Hierarchy of criteria
  • Decision support systems