Skip to main content

The MIEL system: Uniform interrogation of structured and weakly-structured imprecise data

Abstract

We present an information system developed to help assessing the microbiological risk in food. That information system contains experimental results in microbiology, mainly extracted from scientific publications. The increasing amount of the experimental results available and the difficulty to integrate them into a classic relational database schema led us to design a system composed of two distinct subsystems queried through a common interface. The first subsystem is a classic relational database. The second subsystem is a database containing weakly-structured pieces of information expressed in terms of conceptual graphs. The data stored in both bases can be fuzzy ones in order to take into account the specificities of the biological information. The uniform query language used on both relational database and conceptual graph database allows the users to express preferences by using fuzzy sets in their queries. The MIEL system is now operational and used by the microbiologists involved in the Sym’Previus French project.

This is a preview of subscription content, access via your institution.

References

  1. Ballows, A., Truper, H., Dworkin, M., Harder, W., & Schleifer, K. (Eds.) (1992) The prokaryotes, a handbook on the biology of bacteria: Ecophysiology, isolation, identification, applications (2nd ed.). Berlin Heidelberg New York: Springer.

    Google Scholar 

  2. Bosc, P., & Pivert, O. (1995). SQLf: A relational database language for fuzzy querying. IEEE Transactions on Fuzzy Systems, 3(1), 1–17.

    Article  MathSciNet  Google Scholar 

  3. Buche, P., Dervin, C., Haemmerlé, O., Surleau, E., & Thomopoulos, R. (2003). Carrying out the microbial risk in food products using the MIEL software: A new tool to query incomplete, imprecise and heterogeneously structured experimental data stored in a relational database. In Proceedings of the International Conference on Predictive Modelling in Food, ICPMF’03 Quimper, France (pp. 58–60). Berlin Heidelberg NewYork: Springer.

    Google Scholar 

  4. Buche, P., Dervin, C., Haemmerlé, O., & Thomopoulos, R. (2005). Fuzzy querying on incomplete, imprecise and heterogeneously structured data in the relational model using ontologies and rules. IEEE Transactions on Fuzzy Systems, 13(3), 373–383.

    Article  Google Scholar 

  5. Buche, P., & Haemmerlé, O. (2000) Towards a unified querying system of both structured and semi-structured imprecise data using fuzzy views. In Proceedings of the 8th international conference on conceptual structures, Lecture notes in artificial intelligence #1867 Darmstadt, Germany (pp. 207–220). Berlin Heidelberg New York: Springer.

    Google Scholar 

  6. Cao, T. (1999). Foundations of order-sorted fuzzy set logic programming in predicate logic and conceptual graphs. Ph.D. thesis, University of Queensland, Australia.

  7. Dubois, D., & Prade, H. (1988). Possibility theory—An approach to computerized processing of uncertainty. New York: Plenum.

    MATH  Google Scholar 

  8. Dubois, D., & Prade, H. (1995). Tolerant fuzzy pattern matching: An introduction. In P. Bosc & J. Kacprzyk (Eds.), Fuzziness in Database Management Systems (pp. 42–58). Berlin Heidelberg New York: Springer.

    Google Scholar 

  9. Dubois, D., Prade, H., & Rossazza, J. (1991). Vagueness, typicality and uncertainty in class hierarchies. International Journal of Intelligent Systems, 6, 167–183.

    Article  Google Scholar 

  10. Galindo, J., Cubero, J., Pons, O., & Medina, J. (1998). A server for fuzzy SQL queries. In Proceedings of the 1998 workshop FQAS’98 (Flexible query-answering systems), Roskilde, Denmark (pp. 161–171). Berlin Heidelberg New York: Springer.

    Google Scholar 

  11. Genesereth, M., Keller, A., & Duschka, O. (1997). Infomaster: An information integration system. In Proceedings of SIGMOD 97 (pp. 539–542). New York: ACM.

    Chapter  Google Scholar 

  12. Genest, D., & Salvat, E. (1998). A platform allowing typed nested graphs: how CoGITo became CoGITaNT. In Proceedings of the 6th international conference on conceptual structures (ICCS’1998), Lecture notes in artificial intelligence #1453, Montpellier, France (pp. 154–161). Berlin Heidelberg New York: Springer.

    Google Scholar 

  13. Ginsburg, S., & Hull, R. (1983). Order dependency in the relational model. Theoretical Computer Science, (26), 149–195.

    Google Scholar 

  14. Goasdoué, F., Lattes, V., & Rousset, M.-C. (2000). The use of CARIN language and algorithms for information integration: The PICSEL system. International Journal of Cooperative Information Systems, 4(9), 383–401.

    Article  Google Scholar 

  15. Ireland, J., & Moller, A. (2000) Review of international food classification and description. Journal of Food Composition and Analysis, 13(4), 529–538.

    Article  Google Scholar 

  16. Leporq, B., Membré, J., Dervin, C., Buche, P., & Guyonnet, J. (2005). The “Sym’Previus” software, a tool to support decisions to the foodstuff safety. International Journal of Food Microbiology, 100(1–3), 231–237.

    Article  Google Scholar 

  17. Morton, S. (1987). Conceptual graphs and fuzziness in artificial intelligence. Ph.D. thesis, University of Bristol, UK.

  18. Mugnier,M.,&Chein,M. (1992). Polynomial algorithms for projection and matching. In Proceedings of the 7th annual workshop on conceptual graphs, Lecture notes in artificial intelligence #754, Las Cruces, New Mexico (pp. 239–251). Berlin Heidelberg New York: Springer.

    Google Scholar 

  19. Mugnier, M., & Chein, M. (1996). Représenter des connaissances et raisonner avec des graphes. Revue d’intelligence Artificielle, 10(1), 7–56.

    MATH  Google Scholar 

  20. Ordille, J., Levy, A., & Rajaraman, A. (1996). Querying heterogeneous information sources using source descriptions. In Proceedings of the international conference on very large data bases (pp. 251–262). San Francisco, California: Morgan Kaufmann.

    Google Scholar 

  21. Prade, H., & Testemale, C. (1984). Generalizing database relational algebra for the treatment of incomplete or uncertain information and vague queries. Information Sciences,34, 115–143.

    MATH  Article  MathSciNet  Google Scholar 

  22. Sebastiani, F. (1994). Aprobabilistic terminological logic for modelling information retrieval. In Proceedings of the 17th annual international ACM-SIGIR conference on research and development in information retrieval, Dublin, Ireland (pp. 122–130). Berlin Heidelberg New York: Springer.

    Google Scholar 

  23. Sowa, J. (1984). Conceptual structures—Information processing in mind and machine. Reading, Massachussetts: Addison-Welsey.

    MATH  Google Scholar 

  24. Thomopoulos, R., Buche, P., & Haemmerlé, O. (2003a). Different kinds of comparisons between fuzzy conceptual graphs. In Proceedings of the 11th international conference on conceptual structures, ICCS’2003, Lecture notes in artificial intelligence #2746, Dresden, Germany (pp. 54–68). Berlin Heidelberg New York: Springer.

    Google Scholar 

  25. Thomopoulos, R., Buche, P., & Haemmerlé, O. (2003b). Representation of weakly structured imprecise data for fuzzy querying. Fuzzy Sets and Systems, 140-1, 111–128.

    Article  Google Scholar 

  26. Ullman, J. (1988).Principles of database and knowledge-base systems. Rockville, Maryland: Computer Science.

    Google Scholar 

  27. Umano, M. (1982). , Chapt. FREEDOM-0: a fuzzy database system. In M. Gupta, & E., Sanchez E. (Eds.), Fuzzy Information and Decision Processes (pp. 339–347). Amsterdam, The Netherlands: North-Holland

    Google Scholar 

  28. Zadeh, L. (1965). Fuzzy sets. Information and Control,8, 338–353

    MATH  Article  MathSciNet  Google Scholar 

  29. Zadeh, L. (1978). Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems,1, 3–28

    MATH  Article  MathSciNet  Google Scholar 

  30. Zadrozny, S., & Kacprzyk, J. (1998). Implementing fuzzy querying via the internet/WWW: Java applets, activeX controls and cookies. In Proceedings of the workshop FQAS’98 (Flexible query answering systems) Roskilde, Denmark (pp. 358–369). Berlin Heidelberg New York: Springer.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ollivier Haemmerlé.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Haemmerlé, O., Buche, P. & Thomopoulos, R. The MIEL system: Uniform interrogation of structured and weakly-structured imprecise data. J Intell Inf Syst 29, 279–304 (2007). https://doi.org/10.1007/s10844-006-0014-z

Download citation

Keywords

  • Information integration
  • Fuzzy sets
  • Conceptual graphs