Skip to main content

Advertisement

Log in

Metals could challenge pollinator conservation in legacy cities

  • REVIEW PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

Metal contamination is a worldwide issue that is particularly present and ubiquitous in urban environments. Many pollinators, including species of bees, butterflies, and moths are found in heavily modified landscapes where they may be negatively affected by exposure to metal contamination. Increased efforts to convert vacant urban lands to habitat that benefits such communities necessitates a thorough understanding of the hazard and risks pollinators face in metal contaminated landscapes. This investigation revealed that bees and butterflies have complex species and population specific responses to metals. Exposure to these pollutants can have reproductive, immunological, behavioral, and developmental impacts. These include challenged reproductive efforts, longer developmental times, and elevated brood mortality for pollinators.

Implications for insect conservation

This review shows that pollinator conservation efforts are threatened if we fail to recognize the importance of metal exposure within contaminated landscapes. Bees and butterflies are exposed to metal concentrations in legacy cities that can cause reproductive, development, or behavioral impacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Affiliate Spotlight: Lynchburg, Virginia (2021) https://beecityusa.org/affiliate-spotlight-lynchburg-virginia/. Accessed 23 June 2022

  • Aguilera A, Bautista F, Gutiérrez-Ruiz M, Ceniceros-Gómez AE, Cejudo R, Goguitchaichvili A (2021) Heavy metal pollution of street dust in the largest city of Mexico, sources and health risk assessment. Environ Monit Assess 193:193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad I, Akhtar MJ, Zahir ZA, Jamil A (2012) Effect of cadmium on seed germination and seedling growth of four wheat (Triticum aestivum L.) cultivars. Pak J Bot 44:1569–1574

    Google Scholar 

  • Ali S, Ullah MI, Saeed MF, Khalid S, Saqib M, Arshad M, Afzal M, Damalas CA (2019) Heavy metal exposure through artificial diet reduces growth and survival of Spodoptera litura (Lepidoptera: Noctuidae). Environ Sci Pollut Res 26:14426–14434

    Article  CAS  Google Scholar 

  • Antoine CM, Forrest JRK (2021) Nesting habitat of ground-nesting bees: a review. Ecol Entomol 46:143–159

    Article  Google Scholar 

  • Antonkiewicz J, Kołodziej B, Bielińska EJ (2017) Phytoextraction of heavy metals from municipal sewage sludge by Rosa multiflora and Sida hermaphrodita. Int J Phytorem 19:309–318

    Article  CAS  Google Scholar 

  • Arena M, Sgolastra F (2014) A meta-analysis comparing the sensitivity of bees to pesticides. Ecotoxicology 23:324–334

    Article  CAS  PubMed  Google Scholar 

  • Bashir-Tanoli S, Tinsley MC (2014) Immune response costs are associated with changes in resource acquisition and not resource reallocation. Funct Ecol 28:1011–1019

    Article  Google Scholar 

  • Bee Campus USA Commitments (2020) https://beecityusa.org/bee-campus-usa-commitments/. Accessed 26 Jan 2022

  • Bennet L, Burkhead J, Hale K, Terry N, Pilon M, Pilon-Smits E (2003) Analysis of transgenic Indian Mustard plants for phytoremediation of metal-contaminated mine tailings—Bennett et al. 32 (2): 432—Journal of Environmental Quality. J Environ Qual 32:432–440

    Article  Google Scholar 

  • Bhalerao DSA, Dalvi AA, Bhalerao SA (2013) Response of plants towards heavy metal toxicity: an overview of avoidance, tolerance and uptake mechanism

  • Bielecka A, Królak E (2019) Solidago canadensis as a bioaccumulator and phytoremediator of Pb and Zn. Environ Sci Pollut Res 26:36942–36951

    Article  CAS  Google Scholar 

  • Burden CM, Elmore C, Hladun KR, Trumble JT, Smith BH (2016) Acute exposure to selenium disrupts associative conditioning and long-term memory recall in honey bees (Apis mellifera). Ecotoxicol Environ Saf 127:71–79

    Article  CAS  PubMed  Google Scholar 

  • Burden CM, Morgan MO, Hladun KR, Amdam GV, Trumble JJ, Smith BH (2019) Acute sublethal exposure to toxic heavy metals alters honey bee (Apis mellifera) feeding behavior. Sci Rep 9:1–10

    Article  CAS  Google Scholar 

  • Burr A, Schaeg N, Muñiz P, Camilo GR, Hall DM (2016) Wild bees in the city: reimagining urban spaces for native bee health. Cons J Sustain Dev 16:96–121

    Google Scholar 

  • Camilo GR, Muñiz PA, Arduser MS, Spevak EM (2017) A Checklist of the Bees (Hymenoptera: Apoidea) of St. Louis, Missouri, USA. J Kansas Entomol Soc 90:175–188

    Article  Google Scholar 

  • Celli G, Maccagnani B (2003) Honey bees as bioindicators of environmental pollution. Bull Insectol 2003:137–139

    Google Scholar 

  • Cheng S (2003) Effects of Heavy metals on plants and resistance mechanisms. Environ Sci Pollut Res 10:256–264

    Article  CAS  Google Scholar 

  • Chowdhury A, Maiti SK (2016) Identification of metal tolerant plant species in mangrove ecosystem by using community study and multivariate analysis: a case study from Indian Sunderban. Environ Earth Sci 75:744

    Article  Google Scholar 

  • Clarke D, Morley E, Robert D (2017) The bee, the flower, and the electric field: electric ecology and aerial electroreception. J Comp Physiol A 203:737–748

    Article  Google Scholar 

  • Cole MM, Smith RF (1984) Vegetation as indicator of environmental pollution. Trans Inst Br Geograph 9:477–493

    Article  Google Scholar 

  • Conti ME, Botrè F (2001) Honeybees and their products as potential bioindicators of heavy metals contamination. Environ Monit Assess 69:267–282

    Article  CAS  PubMed  Google Scholar 

  • Coon KL, Brown MR, Strand MR (2016) Gut bacteria differentially affect egg production in the anautogenous mosquito Aedes aegypti and facultatively autogenous mosquito Aedes atropalpus (Diptera: Culicidae). Parasit Vectors 9:375

    Article  PubMed  PubMed Central  Google Scholar 

  • Cooper AM et al (2020) Monitoring and mitigation of toxic heavy metals and arsenic accumulation in food crops: a case study of an urban community garden. Plant Direct 4:e00198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Courtney SP, Hill CJ, Westerman A (1982) Pollen carried for long periods by butterflies. Oikos 38:260–263

    Article  Google Scholar 

  • Dambiec M, Klink A, Polechońska L (2022) Concentration and translocation of trace metals in Solidago gigantea in urban areas: a potential bioindicator. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-022-03932-3

    Article  Google Scholar 

  • Di N, Hladun KR, Zhang K, Liu TX, Trumble JT (2016) Laboratory bioassays on the impact of cadmium, copper and lead on the development and survival of honeybee (Apis mellifera L.) larvae and foragers. Chemosphere 152:530–538

    Article  CAS  PubMed  Google Scholar 

  • Di N, Zhang K, Hladun KR, Rust M, Chen Y-F, Zhu Z-Y, Liu T-X, Trumble JT (2020) Joint effects of cadmium and copper on Apis mellifera forgers and larvae. Comp Biochem Physiol c: Toxicol Pharmacol 237:108839

    CAS  PubMed  Google Scholar 

  • Dickel F, Münch D, Amdam GV, Mappes J, Freitak D (2018) Increased survival of honeybees in the laboratory after simultaneous exposure to low doses of pesticides and bacteria. PLoS ONE 13:e0191256

    Article  PubMed  PubMed Central  Google Scholar 

  • dos Santos CF, Acosta AL, Dorneles AL, dos Santos PDS, Blochtein B (2016) Queens become workers: pesticides alter caste differentiation in bees. Sci Rep 6:31605

    Article  PubMed  PubMed Central  Google Scholar 

  • Dylewski Ł, Maćkowiak Ł, Banaszak-Cibicka W (2019) Are all urban green spaces a favourable habitat for pollinator communities? Bees, butterflies and hoverflies in different urban green areas. Ecol Entomol 44:678–689

    Article  Google Scholar 

  • Eeva T, Holmström H, Espín S, Sánchez-Virosta P, Klemola T (2018) Leaves, berries and herbivorous larvae of bilberry Vaccinium myrtillus as sources of metals in food chains at a Cu-Ni smelter site. Chemosphere 210:859–866

  • Eskov EK, Eskova MD, Dubovik VA, Vyrodov IV (2015) Content of heavy metals in melliferous vegetation, bee bodies, and beekeeping production. Russ Agric Sci 41:396–398

    Article  Google Scholar 

  • Franklin EL, Raine NE (2019) Moving beyond honeybee-centric pesticide risk assessments to protect all pollinators. Nat Ecol Evol 3:1373–1375

    Article  PubMed  Google Scholar 

  • Fred MS, Brommer JE (2005) The decline and current distribution of Parnassius apollo (Linnaeus) in Finland; the role of Cd. Ann Zool Fenn 42:69–79

    Google Scholar 

  • Gardiner MM, Harwood JD (2017) Influence of heavy metal contamination on urban natural enemies and biological control. Curr Opin Insect Sci 20:45–53

    Article  PubMed  Google Scholar 

  • Gardiner MM, Burkman CE, Prajzner SP (2013) The value of urban vacant land to support arthropod biodiversity and ecosystem services. Environ Entomol 42:1123–1136

    Article  PubMed  Google Scholar 

  • Gong Y, Diao Q (2017) Current knowledge of detoxification mechanisms of xenobiotic in honey bees. Ecotoxicology 26:1–12

    Article  PubMed  Google Scholar 

  • Goulson D, Nicholls E, Botías C, Rotheray EL (2015) Bee declines driven by combined Stress from parasites, pesticides, and lack of flowers. Science. https://doi.org/10.1126/science.1255957

    Article  PubMed  Google Scholar 

  • Haase A, Rink D, Grossmann K, Bernt M, Mykhnenko V (2014) Conceptualizing urban shrinkage. Environ Plan A Econ Sp 46:1519–1534

    Article  Google Scholar 

  • Harrison T, Winfree R (2015) Urban drivers of plant-pollinator interactions. Funct Ecol 29:879–888

    Article  Google Scholar 

  • Hannula SE, Zhu F, Heinen R, Bezemer TM (2019) Foliar-feeding insects acquire microbiomes from the soil rather than the host plant. Nature Commun 10:1254

  • Hladun KR, Parker DR, Trumble JT (2015) Cadmium, copper, and lead accumulation and bioconcentration in the vegetative and reproductive organs of Raphanus sativus: implications for plant performance and pollination. J Chem Ecol 41:386–395

    Article  CAS  PubMed  Google Scholar 

  • Hou D, O’Connor D, Igalavithana AD, Alessi DS, Luo J, Tsang DCW, Sparks DL, Yamauchi Y, Rinklebe J, Ok YS (2020) Metal contamination and bioremediation of agricultural soils for food safety and sustainability. Nat Rev Earth Environ 1:366–381

    Article  Google Scholar 

  • Inoue TA, Ito T, Hagiya H, Hata T, Asaoka K, Yokohari F, Niihara K (2015) K+ Excretion: the other purpose for puddling behavior in Japanese Papilio butterflies. PLoS ONE 10:e0126632

    Article  PubMed  PubMed Central  Google Scholar 

  • Jennings AA, Cox AN, Hise SJ, Petersen EJ (2002) Heavy metal contamination in the brownfield soils of cleveland. Soil Sedim Contam Int J 11:719–750

    Article  CAS  Google Scholar 

  • Jiang D, Tan M, Guo Q, Yan S (2021) Transfer of heavy metal along food chain: a mini-review on insect susceptibility to entomopathogenic microorganisms under heavy metal stress. Pest Manag Sci 77:1115–1120

    Article  CAS  PubMed  Google Scholar 

  • Jing T-Z, Qi F-H, Wang Z-Y (2020) Most dominant roles of insect gut bacteria: digestion, detoxification, or essential nutrient provision? Microbiome 8:38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson RM, Mao W, Pollock HS, Niu G, Schuler MA, Berenbaum MR (2012) Ecologically appropriate xenobiotics induce cytochrome P450s in Apis mellifera. PLoS ONE 7:e31051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kabata-Pendias A (2011) Trace elements in soils and plants. Page CRC Press, Boca Raton

    Google Scholar 

  • Karim Z, Qureshi BA, Mumtaz M, Qureshi S (2014) Heavy metal content in urban soils as an indicator of anthropogenic and natural influences on landscape of Karachi—a multivariate spatio-temporal analysis. Ecol Ind 42:20–31

    Article  CAS  Google Scholar 

  • Kerr S, Newell RG (2003) Policy-induced technology adoption: evidence from the U.S. lead phasedown. J Ind Econ 51:317–343

    Article  Google Scholar 

  • Kim R-Y, Yoon J-K, Kim T-S, Yang JE, Owens G, Kim K-R (2015) Bioavailability of heavy metals in soils: definitions and practical implementation—a critical review. Environ Geochem Health 37:1041–1061

    Article  CAS  PubMed  Google Scholar 

  • Lever WF (1991) Deindustrialisation and the reality of the post-industrial city. Urban Stud 28:983–999

    Article  Google Scholar 

  • Li F (2018) Heavy metal in urban soil: health risk assessment and management. Heavy Metals. https://doi.org/10.5772/intechopen.73256

    Article  Google Scholar 

  • Li Q, Cai S, Mo C, Chu B, Peng L, Yang F (2010) Toxic effects of heavy metals and their accumulation in vegetables grown in a saline soil. Ecotoxicol Environ Saf 73:84–88

    Article  CAS  PubMed  Google Scholar 

  • Li C, Zhou K, Qin W, Tian C, Qi M, Yan X, Han W (2019) A review on heavy metals contamination in soil: effects, sources, and remediation techniques. Soil Sedim Contam Int J 28:380–394

    Article  Google Scholar 

  • Liu L, Li W, Song W, Guo M (2018) Remediation techniques for heavy metal-contaminated soils: principles and applicability. Sci Total Environ 633:206–219

    Article  CAS  PubMed  Google Scholar 

  • Luescher A, Shetty S (2013) An introductory review to the special issue: shrinking cities and towns: challenge and responses. Urban Des International 18:1–5

    Article  Google Scholar 

  • MacIvor JS (2016) DNA barcoding to identify leaf preference of leafcutting bees. R Soc Open Sci 3:150623

    Article  PubMed  PubMed Central  Google Scholar 

  • Martinek P, Hedb J (2020) Adverse responses of Cabera pusaria caterpillars to high dietary manganese concentration. Entomol Exp Appl 168:635–643

    Article  CAS  Google Scholar 

  • Martinez-Fernandez C, Audirac I, Fol S, Cunningham-Sabot E (2012) Shrinking cities: urban challenges of globalization. Int J Urban Reg Res 36:213–225

    Article  PubMed  Google Scholar 

  • McCutcheon S, Schnoor J (2003) Phytoremediation: transformation and control of contaminants. Wiley, Hoboken

    Book  Google Scholar 

  • Meindl GA, Ashman T-L (2013) The effects of aluminum and nickel in nectar on the foraging behavior of bumblebees. Environ Pollut 177:78–81

    Article  CAS  PubMed  Google Scholar 

  • Meindl GA, Ashman TL (2014) Nickel accumulation by Streptanthus polygaloides (Brassicaceae) Reduces Floral Visitation Rate. J Chem Ecol 40:128–135

    Article  CAS  PubMed  Google Scholar 

  • Meindl GA, Ashman TL (2015) Effects of floral metal accumulation on floral visitor communities: introducing the elemental filter hypothesis. Am J Bot 102:379–389

    Article  PubMed  Google Scholar 

  • Merritt TJS, Bewick AJ (2017) Genetic diversity in insect metal tolerance. Front Genet. https://doi.org/10.3389/fgene.2017.00172

    Article  PubMed  PubMed Central  Google Scholar 

  • Miles LJ, Parker GR (1979) DTPA soil extractable and plant heavy metal concentrations with soil-added Cd treatments. Plant Soil 51:59–68

    Article  CAS  Google Scholar 

  • Mirecki N, Agic R, Šunić L, Milenkovic L, Ilic Z (2015) Transfer factor as indicator of heavy metals content in plants. Fresenius Environ Bull 24:4212–4219

    CAS  Google Scholar 

  • Mitchell TS, Agnew L, Meyer R, Sikkink KL, Oberhauser KS, Borer ET, Snell-Rood EC (2020) Traffic influences nutritional quality of roadside plants for monarch caterpillars. Sci Total Environ 724:138045

    Article  CAS  PubMed  Google Scholar 

  • Monchanin C et al (2021) Chronic exposure to trace lead impairs honey bee learning. Ecotoxicol Environ Saf 212:112008

    Article  CAS  PubMed  Google Scholar 

  • Morel J-L, Echevarria G, Goncharova N, Organization NAT (eds) (2006). Springer, Dordrecht

    Google Scholar 

  • Moroń D, Grześ IM, Skórka P, Szentgyörgyi H, Laskowski R, Potts SG, Woyciechowski M (2012) Abundance and diversity of wild bees along gradients of heavy metal pollution. J Appl Ecol 49:118–125

    Article  Google Scholar 

  • Moroń D, Szentgyörgyi H, Skórka P, Potts SG, Woyciechowski M (2014) Survival, reproduction and population growth of the bee pollinator, Osmia rufa (Hymenoptera: Megachilidae), along gradients of heavy metal pollution. Insect Conserv Divers 7:113–121

    Article  Google Scholar 

  • Mulder C, Aldenberg T, Zwart D, Wijnen H, Breure A (2005) Evaluating the impact of pollution on plant-Lepidoptera relations. Environmetrics 16:357–373

    Article  CAS  Google Scholar 

  • Muradoğlu F, Beyhan Ö, Sönmez F (2017) Response to heavy metals on pollen viability, germination & tube growth of some apple cultivars. Fresenius Environ Bull 26:4456–4461

    Google Scholar 

  • Nakajima F, Aryal R (2018) Heavy metals in urban dust. Heavy Metals. https://doi.org/10.5772/intechopen.74205

    Article  Google Scholar 

  • Negri I, Mavris C, Di Prisco G, Caprio E, Pellecchia M (2015) Honey bees (Apis mellifera, L.) as active samplers of airborne particulate matter. PLoS ONE. https://doi.org/10.1371/journal.pone.0132491

    Article  PubMed  PubMed Central  Google Scholar 

  • Nieminen M, Nuorteva P, Tulisalo E (2001) The effect of metals on the mortality of parnassius Apollo larvae (Lepidoptera: Papilionidae). J Insect Conserv 5:1–7

    Article  Google Scholar 

  • Norouzi S, Khademi H, Faz Cano A, Acosta JA (2015) Using plane tree leaves for biomonitoring of dust borne heavy metals: a case study from Isfahan, Central Iran. Ecol Ind 57:64–73

    Article  CAS  Google Scholar 

  • Ohashi K, Yahara T (1998) Effects of variation in flower number on pollinator visits in Cirsium purpuratum (Asteraceae). Am J Bot 85:219–224

    Article  CAS  PubMed  Google Scholar 

  • Okuyama Y, Matsumoto K, Okochi H, Igawa M (2007) Adsorption of air pollutants on the grain surface of Japanese cedar pollen. Atmos Environ 41:253–260

    Article  CAS  Google Scholar 

  • Pandey B, Agrawal M, Singh S (2014) Coal mining activities change plant community structure due to air pollution and soil degradation. Ecotoxicology 23:1474–1483

    Article  CAS  PubMed  Google Scholar 

  • Parreño MA et al (2022) Critical links between biodiversity and health in wild bee conservation. Trends Ecol Evol 37:309–321

    Article  PubMed  Google Scholar 

  • Perry KI, Hoekstra NC, Culman SW, Gardiner MM (2021) Vacant lot soil degradation and mowing frequency shape communities of belowground invertebrates and urban spontaneous vegetation. Urban Ecosyst 24:737–752

    Article  Google Scholar 

  • Perugini M, Manera M, Grotta L, Abete MC, Tarasco R, Amorena M (2011) Heavy metal (Hg, Cr, Cd, and Pb) contamination in urban areas and wildlife reserves: honeybees as bioindicators. Biol Trace Elem Res 140:170–176

    Article  CAS  PubMed  Google Scholar 

  • Philips KH, Kobiela ME, Snell-Rood EC (2017) Developmental lead exposure has mixed effects on butterfly cognitive processes. Anim Cogn 20:87–96

    Article  PubMed  Google Scholar 

  • Phillips BB, Bullock JM, Gaston KJ, Hudson-Edwards KA, Bamford M, Cruse D, Dicks LV, Falagan C, Wallace C, Osborne JL (2021) Impacts of multiple pollutants on pollinator activity in road verges. J Appl Ecol 58:1017–1029

    Article  Google Scholar 

  • Pietrelli L, Menegoni P, Papetti P (2022) Bioaccumulation of heavy metals by herbaceous species grown in urban and rural sites. Water Air Soil Pollut 233:141

    Article  CAS  Google Scholar 

  • Pitts-Singer TL, Cane JH (2011) The alfalfa leafcutting bee, Megachile rotundata: the world’s most intensively managed solitary bee. Annu Rev Entomol 56:221–237

    Article  CAS  PubMed  Google Scholar 

  • Polykretis P, Delfino G, Petrocelli I, Cervo R, Tanteri G, Montori G, Perito B, Branca JJV, Morucci G, Gulisano M (2016) Evidence of immunocompetence reduction induced by cadmium exposure in honey bees (Apis mellifera). Environ Pollut 218:826–834

    Article  CAS  PubMed  Google Scholar 

  • Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci Int J Exp Plant Biol 180:169–181

    CAS  Google Scholar 

  • Raymann K, Moran NA (2018) The role of the gut microbiome in health and disease of adult honey bee workers. Curr Opin Insect Sci 26:97–104

    Article  PubMed  PubMed Central  Google Scholar 

  • Rieuwerts JS, Thornton I, Farago ME, Ashmore MR (1998) Factors influencing metal bioavailability in soils: preliminary investigations for the development of a critical loads approach for metals. Chem Speciat Bioavailab 10:61–75

    Article  CAS  Google Scholar 

  • Rothman JA, Leger L, Graystock P, Russell K, McFrederick QS (2019a) The bumble bee microbiome increases survival of bees exposed to selenate toxicity. Environ Microbiol 21:3417–3429

    Article  CAS  PubMed  Google Scholar 

  • Rothman JA, Leger L, Kirkwood JS, McFrederick QS (2019b) Cadmium and Selenate exposure affects the honey bee microbiome and metabolome, and bee-associated bacteria show potential for bioaccumulation. Appl Environ Microbiol 85:e01411-19

    Article  PubMed  PubMed Central  Google Scholar 

  • Rothman JA, Russell KA, Leger L, McFrederick QS, Graystock P (2020) The direct and indirect effects of environmental toxicants on the health of bumblebees and their microbiomes. Proc R Soc B Biol Sci 287:20200980

    Article  CAS  Google Scholar 

  • Ryser P, Sauder WR (2006) Effects of heavy-metal-contaminated soil on growth, phenology and biomass turnover of Hieracium piloselloides. Environ Pollut 140:52–61

    Article  CAS  PubMed  Google Scholar 

  • Salz A, Fartmann T (2017) Larval habitat preferences of a threatened butterfly species in heavy-metal grasslands. J Insect Conserv 21:129–136

    Article  Google Scholar 

  • Sampson N, Nassauer J, Schulz A, Hurd K, Dorman C, Ligon K (2017) Landscape care of urban vacant properties and implications for health and safety: lessons from photovoice. Health Place 46:219–228

    Article  PubMed  Google Scholar 

  • Sánchez-Bayo F, Wyckhuys KAG (2019) Worldwide decline of the entomofauna: a review of its drivers. Biol Conserv 232:8–27

    Article  Google Scholar 

  • Sansalone JJ, Buchberger SG (1997) Partitioning and first flush of metals in urban roadway storm water. J Environ Eng 123:134–143

    Article  CAS  Google Scholar 

  • Schwarz K (2016) Modeling to predict high Pb areas. In: Hodges Snyder E, McIvor K, Brown S (eds) Sowing seeds in the city: human dimensions. Springer, Dordrecht, pp 135–145

    Chapter  Google Scholar 

  • Schwenke RA, Lazzaro BP, Wolfner MF (2016) Reproduction-immunity trade-offs in insects. Annu Rev Entomol 61:239–256

    Article  CAS  PubMed  Google Scholar 

  • Scott SB, Sivakoff FS, Gardiner MM (2022) Exposure to urban heavy metal contamination diminishes bumble bee colony growth. Urban Ecosyst. https://doi.org/10.1007/s11252-022-01206-x

    Article  Google Scholar 

  • Seymour E (2020) Tighe & Ryberg-Webster: legacy cities: continuity and change amid decline and revival. J Am Plan Assoc 86:520–522

    Article  Google Scholar 

  • Sgolastra F, Arnan X, Cabbri R, Isani G, Medrzycki P, Teper D, Bosch J (2018a) Combined exposure to sublethal concentrations of an insecticide and a fungicide affect feeding, ovary development and longevity in a solitary bee. Proc R Soc B Biol Sci 285:20180887

    Article  Google Scholar 

  • Sgolastra F, Blasioli S, Renzi T, Tosi S, Medrzycki P, Molowny-Horas R, Porrini C, Braschi I (2018b) Lethal effects of Cr(III) alone and in combination with propiconazole and clothianidin in honey bees. Chemosphere 191:365–372

    Article  CAS  PubMed  Google Scholar 

  • Shahid M, Dumat C, Khalid S, Schreck E, Xiong T, Niazi NK (2017) Foliar heavy metal uptake, toxicity and detoxification in plants: a comparison of foliar and root metal uptake. J Hazard Mater 325:36–58

    Article  CAS  PubMed  Google Scholar 

  • Sharma K, Basta NT, Grewal PS (2015a) Soil heavy metal contamination in residential neighborhoods in post-industrial cities and its potential human exposure risk. Urban Ecosyst 18:115–132

    Article  Google Scholar 

  • Sharma K, Cheng Z, Grewal PS (2015b) Relationship between soil heavy metal contamination and soil food web health in vacant lots slated for urban agriculture in two post-industrial cities. Urban Ecosyst 18:835–855

    Article  Google Scholar 

  • Shephard AM, Mitchell TS, Henry SB, Oberhauser KS, Kobiela ME, Snell-Rood EC (2020) Assessing zinc tolerance in two butterfly species: consequences for conservation in polluted environments. Insect Conserv Divers 13:201–210

    Article  Google Scholar 

  • Shephard AM, Zambre AM, Snell-Rood EC (2021) Evaluating costs of heavy metal tolerance in a widely distributed, invasive butterfly. Evol Appl 14:1390–1402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shu Y, Gao Y, Sun H, Zou Z, Zhou Q, Zhang G (2009) Effects of zinc exposure on the reproduction of Spodoptera litura Fabricius (Lepidoptera: Noctuidae). Ecotoxicol Environ Saf 72:2130–2136

    Article  CAS  PubMed  Google Scholar 

  • Simon L, Martin HW, Adriano DC (1996) Chicory (Cichorium intybus L.) and dandelion (Taraxacum officinale Web.) as phytoindicators of cadmium contamination. Water Air Soil Pollut 91:351–362

    Article  CAS  Google Scholar 

  • Singh VP (2005) Metal toxicity and tolerance in plants and animals. Sarup & Sons, Delhi

    Google Scholar 

  • Singh S, Parihar P, Singh R, Singh VP, Prasad SM (2016) Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Front Plant Sci. https://doi.org/10.3389/fpls.2015.01143/full

    Article  PubMed  PubMed Central  Google Scholar 

  • Sivakoff FS, Gardiner MM (2017) Soil lead contamination decreases bee visit duration at sunflowers. Urban Ecosyst 20:1221–1228

    Article  Google Scholar 

  • Sivakoff FS, Prajzner SP, Gardiner MM (2018) Unique bee communities within vacant lots and urban farms result from variation in surrounding urbanization intensity. Sustainability 10:1926

    Article  Google Scholar 

  • Sivakoff FS, Prajzner SP, Gardiner MM (2020) Urban heavy metal contamination limits bumble bee colony growth. J Appl Ecol. https://doi.org/10.1111/1365-2664.13651

    Article  Google Scholar 

  • Song Y, Du X, Ye X (2019) Analysis of potential risks associated with urban stormwater quality for managed aquifer recharge. Int J Environ Res Public Health 16:3121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Søvik E, Perry C, Lamora A, Barron A, Ben-Shahar Y (2015) Negative impact of manganese on honeybee foraging. Biol Lett 11:20140989

    Article  PubMed  PubMed Central  Google Scholar 

  • Steffan-Dewenter I, Tscharntke T (1999) Effects of habitat isolation on pollinator communities and seed set. Oecologia 121:432–440

    Article  CAS  PubMed  Google Scholar 

  • Su H, Wu J, Zhang Z, Ye Z, Chen Y, Yang Y (2021) Effects of cadmium stress at different concentrations on the reproductive behaviors of beet armyworm Spodoptera exigua (Hübner). Ecotoxicology 30:402–410

    Article  CAS  PubMed  Google Scholar 

  • Suman J, Uhlik O, Viktorova J, Macek T (2018) Phytoextraction of heavy metals: a promising tool for clean-up of polluted environment? Front Plant Sci. https://doi.org/10.3389/fpls.2018.01476/full

    Article  PubMed  PubMed Central  Google Scholar 

  • Suvarapu LN, Baek S-O (2017) Determination of heavy metals in the ambient atmosphere: a review. Toxicol Ind Health 33:79–96

    Article  PubMed  Google Scholar 

  • Szentgyörgyi H, Moroń D, Nawrocka A, Tofilski A, Woyciechowski M (2017) Forewing structure of the solitary bee Osmia bicornis developing on heavy metal pollution gradient. Ecotoxicology 26:1031–1040

    Article  PubMed  PubMed Central  Google Scholar 

  • Tangahu BV, Sheikh Abdullah SR, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng 2011:1–31

    Article  Google Scholar 

  • Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metals toxicity and the environment. In Molecular, clinical and environmental toxicology p 133–164

  • Tiedeken EJ, Stout JC, Stevenson PC, Wright GA (2014) Bumblebees are not deterred by ecologically relevant concentrations of nectar toxins. J Exp Biol 217:1620–1625

    PubMed  PubMed Central  Google Scholar 

  • US EPA O (2016) USGS background soil-lead survey: state data. https://www.epa.gov/superfund/usgs-background-soil-lead-survey-state-data. Accessed 14 June 2022

  • USA TODAY Investigation Reveals Hazardous Levels of Lead in Neighborhoods Across the Country (2012) PR Newswire. PR Newswire Association LLC. https://go.gale.com/ps/i.do?p=AONE&sw=w&issn=&v=2.1&it=r&id=GALE%7CA328188032&sid=googleScholar&linkaccess=abs. Accessed 14 June 2022

  • Turer D, Maynard JB, Sansalone JJ (2001) Heavy metal contamination in soils of urban highways comparison between runoff and soil concentrations at Cincinnati, Ohio. Water Air Soil Pollut 132:293–314

    Article  CAS  Google Scholar 

  • Turner A, Mawji E (2004) Hydrophobicity and octanol−water partitioning of trace metals in natural waters. Environ Sci Technol 38:3081–3091

    Article  CAS  PubMed  Google Scholar 

  • Turo KJ, Spring MR, Sivakoff FS, de la Flor YAD, Gardiner MM (2021) Conservation in post-industrial cities: how does vacant land management and landscape configuration influence urban bees? J Appl Ecol 58:58–69

    Article  Google Scholar 

  • van Ooik T, Rantala MJ (2010) Local adaptation of an insect herbivore to a heavy metal contaminated environment. Ann Zool Fenn 47:215–222

    Article  Google Scholar 

  • van Ooik T, Pausio S, Rantala MJ (2008) Direct effects of heavy metal pollution on the immune function of a geometrid moth, Epirrita autumnata. Chemosphere 71:1840–1844

    Article  PubMed  Google Scholar 

  • Wang L et al (2019) Dynamic changes of gut microbial communities of bumble bee queens through important life stages. mSystems 4:e00631-19

    Article  PubMed  PubMed Central  Google Scholar 

  • Webber SM, Garratt MPD, Lukac M, Bailey AP, Huxley T, Potts SG (2020) Quantifying crop pollinator-dependence and pollination deficits: the effects of experimental scale on yield and quality assessments. Agric Ecosyst Environ 304:107106

    Article  Google Scholar 

  • Wei Z-H, Wang X-Q, Li P-R, Tan X, Yang X (2020) Diet-mediated effects of cadmium on the fitness-related traits and detoxification and antioxidative enzymes in the oriental armyworm, Mythimna separata. Entomologia Generalis 40:407–419

    Article  Google Scholar 

  • Wong MH, Cheung YH (1986) Heavy metal concentrations in caterpillars fed with waste-grown vegetables. Agric Wastes 18:61–68

    Article  CAS  Google Scholar 

  • Wuana RA, Okieimen FE (2011a) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. https://www.hindawi.com/journals/isrn/2011a/402647/. Accessed 22 Aug 2019

  • Wuana RA, Okieimen FE (2011b) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol 2011:e402647

    Google Scholar 

  • Wu-Smart J, Spivak M (2016) Sub-lethal effects of dietary neonicotinoid insecticide exposure on honey bee queen fecundity and colony development. Sci Rep 6:32108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xerxes Society (2017) Pollinator plants midwest region. https://xerces.org/sites/default/files/2018-05/17-050_03_XercesSoc_PollinatorPlants_Midwest-Region_web-3page.pdf

  • Xu J, Strange JP, Welker DL, James RR (2013) Detoxification and stress response genes expressed in a western North American bumble bee, Bombus huntii (Hymenoptera: Apidae). BMC Genom 14

  • Xun E, Zhang Y, Zhao J, Guo J (2017) Translocation of heavy metals from soils into floral organs and rewards of Cucurbita pepo: implications for plant reproductive fitness. Ecotoxicol Environ Saf 145:235–243

    Article  CAS  PubMed  Google Scholar 

  • Xun E, Zhang Y, Zhao J, Guo J (2018) Heavy metals in nectar modify behaviors of pollinators and nectar robbers: consequences for plant fitness. Environ Pollut 242:1166–1175

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Teng Y, Song L, Zuo R (2016) Tracing sources and contamination assessments of heavy metals in road and foliar dusts in a typical mining city, China. PLoS ONE 11:e0168528

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu Y, Christie P, Scott LA (2001) Uptake of Zn by arbuscular mycorrhizal white clover from Zn-contaminated soil. Chemosphere 42:193–199

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Lanno for providing feedback and edits on this article. S.B.S. was supported by a fellowship from the United States National Science Foundation Graduate Research Fellowship Program.

Author information

Authors and Affiliations

Authors

Contributions

S.B.S. conducted the literature search. S.B.S. and M.M.G wrote the main manuscript text. M.M.G prepared figure 1. F.S.S prepared figure 2. S.B.S. prepared figures 3-5 and table 1 in the appendix. All authors reviewed the manuscript.

Corresponding author

Correspondence to Sarah B. Scott.

Ethics declarations

Competing interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 64 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scott, S.B., Sivakoff, F.S., Meuti, M.E. et al. Metals could challenge pollinator conservation in legacy cities. J Insect Conserv 27, 361–375 (2023). https://doi.org/10.1007/s10841-023-00474-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-023-00474-y

Keywords

Navigation