Lost and found: 160 years of Lepidoptera observations in Wuppertal (Germany)

Abstract

In the light of the current discussion on reduced insect biomass and species decline, we would like to draw attention to the work of amateur entomologists who have been observing the moth and butterfly fauna for decades. Actually, the recording of butterflies and moths has a long tradition in Wuppertal and its surroundings (Germany, North Rhine-Westfalia, Bergisches Land). Therefore, we have access to rather detailed data of the local macrolepidoptera fauna collected over the last 160 years and are able to comment on the trends of moth and butterfly populations during this rather long period. We review historical and current data and provide a comprehensive abundance list of all macrolepidoptera species observed in the study region. We found that, from the mid-twentieth century onwards, the species richness of butterfly and moths species decreased considerably. In terms of the number of species evaluated (537), we see that 27% decreased within the last 160 years while 15% have already been lost. Additionally, 24% are apparently stable at a low level. Particularly affected are highly specialised species of heath, moor, grassland, scrub, coppice and orchard habitats. However, 15% of the evaluated species are observed more frequently. Some of these newly colonised the study region (2.4%). Since Wuppertal is a city that profited from the industrial revolution from the middle of the nineteenth century onwards, we think that our results could serve as a representative example of the loss of species richness due to industrialisation, urbanisation, intensive agriculture and forestry.

Implications for insect conservation

If we intend to increase species richness of butterflies and moths again, the focus must be on protecting, restoring and promoting low-nutrient open landscape habitats rather than forests.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Altermatt F (2010) Climatic warming increases voltinism in European butterflies and moths. Proc R Soc B 277:1281–1287. https://doi.org/10.1098/rspb.2009.1910

    Article  PubMed  Google Scholar 

  2. Altermatt F, Ebert D (2016) Reduced flight-to-light behaviour of moth populations exposed to long-term urban light pollution. Biol Lett. https://doi.org/10.1098/rsbl.2016.0111

    Article  PubMed  PubMed Central  Google Scholar 

  3. Boyes D, Fox R, Shortall C, Whittaker R (2019) Bucking the trend: the diversity of Anthropocene ‘winners’ among British moths. Front Biogeogr 11(3):e43862. https://doi.org/10.21425/F5FBG43862

    Article  Google Scholar 

  4. Braschler B, Hill JK (2007) Role of larval host plants in the climate-driven range expansion of the butterfly Polygonia c-album. J Anim Ecol 76:415–423. https://doi.org/10.1111/j.1365-2656.2007.01217.x

    Article  PubMed  Google Scholar 

  5. Cardoso P, Barton PS, Birkhofer K, Chichorro F, Deacon C, Fartmann T, Fukushima CS, Gaigher R, Habel J, Hallmann CA, Hill M, Hochkirch A, Kwak ML, Mammola S, Noriega JA, Orfinger AB, Pedraza F, Pryke JS, Roque FO, Settele J, Simaika JP, Stork NE, Suhling F, Vorster C, Samways MJ (2020) Scientists’ warning to humanity on insect extinctions. Biol Conserv 242:108426. https://doi.org/10.1016/j.biocon.2020.108426

    Article  Google Scholar 

  6. Conrad KF, Warren MS, Fox R, Parsons MS, Woiwod IP (2006) Rapid declines of common, widespread British moths provide evidence of an insect biodiversity crisis. Biol Conserv 132:279–291. https://doi.org/10.1016/j.biocon.2006.04.020

    Article  Google Scholar 

  7. Crossley MS, Meier AR, Baldwin EM, Berry LL, Crenshaw LC, Hartman GL, Lagos-Lutz D, Nichols DH, Patel K, Varriano S, Snyder WE, Moran MD (2020) No net insect abundance and diversity declines across US Long Term Ecological Research sites. Nat Ecol Evol 4:1368–1376. https://doi.org/10.1038/s41559-020-1269-4

    Article  PubMed  Google Scholar 

  8. Dahl A, Radtke A (2012) Neue Nachweise von Cupido argiades (Pallas, 1771) in Nordrhein-Westfalen (Lep. Lycaenidae). Melanargia. Nachrichten Arbeitsgem. rhein.-westf. Lepidopterol 24:119–123

    Google Scholar 

  9. Dennis EB, Brereton TM, Morgan BJT et al (2019) Trends and indicators for quantifying moth abundance and occupancy in Scotland. J Insect Conserv 23:369–380. https://doi.org/10.1007/s10841-019-00135-z

    Article  Google Scholar 

  10. Desquilbet M, Gaume L, Grippa M, Céréghino R, Humbert J-F, Bonmatin J-M, Cornillon P-A, Maes D, van Dyck H, Goulson D (2020) Comment on “Meta-analysis reveals declines in terrestrial but in-creases in freshwater insect abundances.” Science 370(6523):eabd8947. https://doi.org/10.1126/science.abd8947

    CAS  Article  PubMed  Google Scholar 

  11. Fartmann T (2017) Überleben in fragmentierten Landschaften. Nat Landsch 49(9):277–282

    Google Scholar 

  12. Filz KJ, Schmitt T (2012) Untersuchung der Arealdynamik des Kurzschwänzigen Bläulings (Cupido argiades, PALLAS 1771) unter Klimawandelbedingungen mit Artverbreitungsmodellen in Europa (Lepidoptera: Lycaenidae). Abh Delattinia 38:215–228

    Google Scholar 

  13. Fox R, Randle Z, Hill L, Anders S, Wiffen L, Parsons MS (2011) Moths count: recording moths for conservation in the UK. J Insect Conserv 15:55–68. https://doi.org/10.1007/s10841-010-9309-z

    Article  Google Scholar 

  14. Fox R, Oliver TH, Harrower C, Parsons MS, Thomas CD (2014) Roy DB (2014) Long-term changes to the frequency of occurrence of British moths are consistent with opposing and synergistic effects of climate and land-use changes. J Appl Ecol 51:949–957. https://doi.org/10.1111/1365-2664.12256

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Fox R, Brereton TM, Asher J, August TA, Botham MS, Bourn NAD, Cruickshanks KL, Bulman CR, Ellis S, Harrower CA, Middlebrook I, Noble DG, Powney GD, Randle Z, Warren MS, Roy DB (2015) The state of the UK’s butterflies 2015. Butterfly Conservation and the Centre for Ecology and Hydrology, Wareham, Dorset

    Google Scholar 

  16. Franzén M, Johannesson M (2007) Predicting extinction risk of butterflies and moths (Macrolepidoptera) from distribution patterns and species characteristics. J Insect Conserv 11:367–390. https://doi.org/10.1007/s10841-006-9053-6

    Article  Google Scholar 

  17. Gaedike R, Nuss M, Steiner A, Trusch R (Eds) (2017) Verzeichnis der Schmetterlinge Deutschlands (Lepidoptera). 2nd edition. Entomofauna Germanica Vol. 3. Entomol Nachr Ber Beiheft 21:1–362

  18. Groenendijk D, Ellis NW (2011) The state of the Dutch larger moth fauna. J Insect Conserv 15:95–101. https://doi.org/10.1007/s10841-010-9326-y

    Article  Google Scholar 

  19. Habel JC, Trusch R, Schmitt T, Ochse M, Ulrich W (2019a) Long-term large-scale decline in relative abundances of butterfly and burnet moth species across south-western Germany. Sci Rep 9:14921. https://doi.org/10.1038/s41598-019-51424-1

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Habel JC, Ulrich W, Biburger N, Seibold S, Schmitt T (2019b) Agricultural intensification drives butterfly decline. Insect Conserv Divers 12:289–295. https://doi.org/10.1111/icad.12343

    Article  Google Scholar 

  21. Hallmann CA, Sorg M, Jongejans E, Siepel H, Hofland N, Schwan H, Stenmans W, Müller A, Sumser H, Hörren T, Goulson D, de Kroon H (2017) More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12(10):e0185809. https://doi.org/10.1371/journal.pone.0185809

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Hanisch K (2009) Tagfalter im Gebiet der Stadt Köln einschließlich Königsforst und Wahner Heide - ehemals und heute (Lep., Hesperioidea et Papilionoidea). Melanargia. Nachrichten Arbeitsgem. rhein.-westf. Lepidopterol 21:137–225

    Google Scholar 

  23. Hock W, Kinkler H, Lechner R, Nippel F, Pähler R, Retzlaff H, von der Schulenburg H, Schulze W, Schumacher H, Vorbrüggen W, Wasner U, Weidner A, Wittland W (1997) Praxishandbuch Schmetterlingsschutz. LÖBF-Reihe Artenschutz, Band 1, Landesanstalt für Ökologie, Bodenordnung und Forsten Nordrhein-Westfalen, Recklinghausen

    Google Scholar 

  24. Jähnig SC, Baranov V, Altermatt F, Cranston P, Friedrichs-Manthey M, Geist J, He F, Heino J, Hering D, Hölker F, Jourdan J, Kalinkat G, Kiesel J, Leese F, Maasri A, Monaghan MT, Schäfer RB, Tockner K, Tonkin JD, Domisch S (2020) Revisiting global trends in freshwater insect biodiversity. WIREs Water. https://doi.org/10.1002/wat2.1506

    Article  Google Scholar 

  25. Jelinek K-H (2006) Die Schmetterlingsfauna des Rhein-Erft-Kreises. Teil 1: Tagfalter und Widderchen (Lep., Papilionidae, Pieridae, Lycaenidae, Nymphalidae, Hesperiidae et Zygaenidae). Melanargia. Nachrichten Arbeitsgem. rhein.-westf. Lepidopterol 18:109–208

    Google Scholar 

  26. Karsholt O, Razowski J (1996) The Lepidoptera of Europe. A distributional checklist. Apollo Books, Stenstrup

    Google Scholar 

  27. Kinkler H, Schmitz W, Nippel F (1971) Die Tagfalter des Bergischen Landes unter Einbeziehung der Sammlungen des Naturwissenschaftlichen und Stadthistorischen Museums Wuppertal. Jber natwiss Ver Wupp 24:20–63

    Google Scholar 

  28. Kinkler H, Schmitz W, Nippel F, Swoboda G (1974) Die Falter des Bergischen Landes, II Teil: Spinner, Schwärmer etc unter Einbeziehung der Sammlungen des Fuhlrott-Museums in Wuppertal. Jber natwiss Ver Wupp 27:38–80

    Google Scholar 

  29. Kinkler H, Schmitz W, Nippel F, Swoboda G (1975) Die Schmetterlinge des Bergischen Landes, III Teil: Die Eulenschmetterlinge (I) unter Einbeziehung der Sammlungen des Fuhlrott-Museums in Wuppertal. Jber natwiss Ver Wupp 28:31–74

    Google Scholar 

  30. Kinkler H, Schmitz W, Nippel F, Swoboda G (1979) Die Schmetterlinge des Bergischen Landes, IV Teil: Die Eulenschmetterlinge (II) unter Einbeziehung der Sammlungen des Fuhlrott-Museums in Wuppertal. Jber natwiss Ver Wupp 32:70–100

    Google Scholar 

  31. Kinkler H, Schmitz W, Nippel F, Swoboda G (1985) Die Schmetterlinge des Bergischen Landes, V Teil: Die Spanner (I) unter Einbeziehung der Sammlungen des Fuhlrott-Museums in Wuppertal. Jber natwiss Ver Wupp 38:50–71

    Google Scholar 

  32. Kinkler H, Schmitz W, Nippel F, Swoboda G (1987) Die Schmetterlinge des Bergischen Landes, VI Teil: Die Spanner (II) – unter Einbeziehung der Sammlungen des Fuhlrott-Museums in Wuppertal. Jber natwiss Ver Wupp 40:17–41

    Google Scholar 

  33. Kinkler H, Schmitz W, Nippel F, Swoboda G (1992) Die Schmetterlinge des Bergischen Landes VII Teil: Nachträge und Register. Jber natwiss Ver Wupp 45:30–55

    Google Scholar 

  34. Klausnitzer B, Segerer AH (2019) Stellungnahme zum Insektensterben. Entomol Z 129:121–125

    Google Scholar 

  35. Krogmann L, Betz O, Geldmann J, Goulson D, Menzel R, Riecken U, Ruther J, Schwenninger R, Sorg M, Steidle J, Tscharntke T, Wägele W (2018) Neun-Punkte-Plan gegen das Insektensterben – Die Perspektive der Wissenschaft. Entomol Z 128:247–249

    Google Scholar 

  36. Kühn E, Musche M, Harpke A, Wiemers M, Feldmann R, Settele J (2017) Tagfalter-Monitoring Deutschland: Jahresbericht 2016. Oedippus 34

  37. Langevelde F, Braamburg-Annegarn M, Huigens T, Groendijk R, Poitevin O, van Deijk J, Ellis WN, Grunsven R, Vos R, Vos RA, Franzén M, WallisDeVries MF (2017) Declines in moth populations stress the need for conserving dark nights. Glob Change Biol. https://doi.org/10.1111/gcb.14008

    Article  Google Scholar 

  38. Laussmann T, Radtke A, Wiemert T (2005) Schmetterlinge beobachten im Raum Wuppertal. Jber natwiss Ver Wupp 57/58

  39. Laussmann T, Radtke A, Wiemert T, Dahl A (2009) 150 Jahre Schmetterlingsbeobachtungen im Raum Wuppertal – langfristige Veränderungen in der Lepidopterenfauna der Region. Jber natwiss Ver Wupp 61:31–100

    Google Scholar 

  40. Laussmann T, Radtke A, Wiemert T, Dahl A (2010) 150 Jahre Schmetterlingsbeobachtungen im Raum Wuppertal – Auswirkung von Klima- und Landschaftsveränderungen. Entomol Z 120:269–277

    Google Scholar 

  41. Lebeau J, Wesselingh RA, van Dyck H (2016) Floral resource limitation severely reduces butterfly survival, condition and flight activity in simplified agricultural landscapes. Oecologia 180:421–427. https://doi.org/10.1007/s00442-015-3492-2

    Article  PubMed  Google Scholar 

  42. Lenz N, Schulten D (2005) Die Tagfalter (Lep., Hesperioidea et Papilionoidea) im Gebiet der Landeshauptstadt Düsseldorf um 1900 und um 2000 – ein Beispiel für alarmierende Artenverarmung im 20. Jahrhundert. Melanargia. Nachrichten Arbeitsgem. rhein.-westf. Lepidopterol 17:19–29

    Google Scholar 

  43. Maes D, van Dyck H (2001) Butterfly diversity loss in Flanders (north Belgium): Europe’s worst case scenario? Biol Conserv 99:263–276. https://doi.org/10.1016/S0006-3207(00)00182-8

    Article  Google Scholar 

  44. Maes D, van Swaay CAM (1997) A new methodology for compiling national Red Lists applied on butterflies (Lepidoptera, Rhopalocera) in Flanders (N.-Belgium) and in The Netherlands. J Insect Conserv 1(2):113–124. https://doi.org/10.1023/A:1018435110335

    Article  Google Scholar 

  45. Macgregor CJ, Evans DM, Fox R, Pocock MJO (2017) The dark side of street lighting: impacts on moths and evidence for the disruption of nocturnal pollen transport. Glob Change Biol 23:697–707. https://doi.org/10.1111/gcb.13371

    Article  Google Scholar 

  46. Melero Y, Stefanescu C, Pino J (2016) General declines in Mediterranean butterflies over the last two decades are modulated by species traits. Biol Conserv 201:336–342. https://doi.org/10.1016/j.biocon.2016.07.029

    Article  Google Scholar 

  47. Merckx T, Slade E (2014) Macro-moth families differ in their attraction to light: implications for light trap monitoring programs. Insect Conserv Divers 7(5):453–461. https://doi.org/10.1111/icad.12068

    Article  Google Scholar 

  48. Müller J (1925) Die Pflanzenwelt der Umgebung von Velbert. Velberter Beitr 1:53–100

    Google Scholar 

  49. Pähler R, Dudler H, Hille A (2019) Das stille Sterben der Schmetterlinge - The silent demise of butterflies and moths. Self-Publishing, Verl

    Google Scholar 

  50. Platania L, Menchetti M, Dincă V, Corbella C, Kay-Lavelle I, Vila R, Wiemers M, Schweiger O, Dapporto L (2020) Assigning occurrence data to cryptic taxa improves climatic niche assessments: Biodecrypt, a new tool tested on European butterflies. Glob Ecol Biogeogr 29:1852–1865. https://doi.org/10.1111/geb.13154

    Article  Google Scholar 

  51. Pogt H (1998) Historische Ansichten aus dem Wuppertal des 18. und 19. Jahrhunderts. 2. Auflage Selbstverlag Bergischer Geschichtsverein Abteilung Wuppertal

  52. Retzlaff H, Seliger R (2007) Die Hochheiden, Felsheiden, Bergwiesen, Moore und Wälder im Hochsauerland und in der Hocheifel als bedeutsame Refugien für montane Schmetterlingsarten in Nordrhein-Westfalen. Melanargia. Nachrichten Arbeitsgem. rhein.-westf. Lepidopterol 19:1–62

    Google Scholar 

  53. Samways MJ, Barton PS, Birkhofer K, Chichorro F, Deacon C, Fartmann T, Fukushima CS, Gaigher R, Habel J, Hallmann CA, Hill M, Hochkirch A, Kwak ML, Kaila L, Maes D, Mammola S, Noriega JA, Orfinger AB, Pedraza F, Pryke JS, Roque FO, Settele J, Simaika JP, Stork NE, Suhling F, Vorster C, Cardoso P (2020) Solutions for humanity on how to conserve insects. Biol Conserv 242:108427. https://doi.org/10.1016/j.biocon.2020.108427

    Article  Google Scholar 

  54. Sánchez-Bayo F, Wyckhuys KAG (2019) Worldwide decline of the entomofauna: a review of its drivers. Biol Conserv 232:8–27. https://doi.org/10.1016/j.biocon.2019.01.020

    Article  Google Scholar 

  55. Schmidt H (1887) Flora von Elberfeld und Umgebung. Jahresber Nat Ver Elberf 7:1–288

    Google Scholar 

  56. Schmitt T, Habel JC (2018) Vanishing of the common species: empty habitats and the role of genetic diversity. Biol Conserv 218:211–216. https://doi.org/10.1016/j.biocon.2017.12.018

    Article  Google Scholar 

  57. Seibold S, Gossner MM, Simons NK, Bluthgen N, Muller J, Ambarli D, Ammer C, Bauhus J, Fischer M, Habel JC, Linsenmair KE, Nauss T, Penone C, Prati D, Schall P, Schulze ED, Vogt J, Wollauer S, Weisser WW (2019) Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574(7780):671–674. https://doi.org/10.1038/s41586-019-1684-3

    CAS  Article  PubMed  Google Scholar 

  58. Stamm K (1981) Prodromus der Lepidopteren-Fauna der Rheinlande und Westfalens. Self-Publishing, Solingen

    Google Scholar 

  59. Stefanescu C, Carnicer J, Peñuelas J (2011) Determinants of species richness in generalist and specialist Mediterranean butterflies: the negative synergistic forces of climate and habitat change. Ecography 34:353–363. https://doi.org/10.1111/j.1600-0587.2010.06264.x

    Article  Google Scholar 

  60. Stieglitz W (1987) Flora von Wuppertal. Jber natwiss Ver Wuppertal Beiheft 1

  61. Stieglitz W (1991) Erster Nachtrag zur ‘Flora von Wuppertal.’ Jber natwiss Ver Wupp 44:96–108

    Google Scholar 

  62. Sundermann H (1979) Die Vegetation des Stadtgebiets. In: Kolbe, W Wuppertal - Natur und Landschaft, Hammer-Verlag, Wuppertal S. 54–59

  63. Thomas C, Bodsworth E, Wilson R, Simmons AD, Davies ZG, Musche M, Conradt L (2001) Ecological and evolutionary processes at expanding range margins. Nature 411:577–581. https://doi.org/10.1038/35079066

    CAS  Article  PubMed  Google Scholar 

  64. van Dyck H, van Strien AJ, Maes D, van Swaay CAM (2009) Declines in common, widespread butterflies in a landscape under intense human use. Conserv Biol 23:957–965. https://doi.org/10.1016/j.biocon.2017.12.018

    Article  PubMed  Google Scholar 

  65. van Klink R, Bowler DE, Gongalsky KB, Swengel AB, Gentile A, Chase JM (2020a) Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 368:417–442. https://doi.org/10.1126/science.aax993

    Article  PubMed  Google Scholar 

  66. van Klink R, Bowler DE, Gongalsky KB, Swengel AB, Gentile A, Chase JM (2020b) Response to Comment on “Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances.” Science 370(6523):eabe0760. https://doi.org/10.1126/science.abe0760

    CAS  Article  PubMed  Google Scholar 

  67. van Swaay C, Warren M, Loïs G (2006) Biotope use and trends of European butterflies. J Insect Conserv 10:189–209. https://doi.org/10.1007/s10841-006-6293-4

    Article  Google Scholar 

  68. van Swaay CAM, Dennis EB, Schmucki R, Sevilleja CG, Balalaikins M, Botham M, Bourn N, Brereton T, Cancela JP, Carlisle B, Chambers P, Collins S, Dopagne C, Escobés R, Feldmann R, Fernández-García JM, Fontaine B, Gracianteparaluceta A, Harrower C, Harpke A, Heliölä J, Komac B, Kühn E, Lang A, Maes D, Mestdagh X, Middlebrook I, Monasterio Y, Munguira ML, Murray T, Musche M, Õunap E, Paramo F, Pettersson L, Piqueray J, Settele J, Stefanescu C, Švitra G, Tiitsaar A, Verovnik R, Warren MS, Wynhoff I, Roy DB (2019) The EU butterfly indicator for grassland species: 1990–2017: Technical Report. Butterfly Conservation Europe

  69. von Heinemann H (1870) Berge’s Schmetterlingsbuch, Vierte. K. Thienemann’s Verlag Jul Hoffmann, Stuttgart

    Google Scholar 

  70. Weymer G (1863) Verzeichnis der in der Umgebung von Elberfeld und Barmen vorkommenden Schmetterlinge. Jber natwiss Ver Elberf Barmen 4:51–100

    Google Scholar 

  71. Weymer G (1878) Macrolepidopteren der Umgebung von Elberfeld Zweites und vermehrtes Verzeichnis. Jber natwiss Ver Wupp 5:50–102

    Google Scholar 

  72. Weymer G (1908) Kurze Notizen über die Lepidopterenfauna der Hildener Heide. Berichte über die Versammlung des Botanischen und Zoologischen Vereins der Rheinlande und Westfalens 34–37

Download references

Acknowledgements

The authors wish to thank the many amateur entomologists who joined us and delivered data in recent years. In particular, we would also like to thank the editors and the reviewers for their many helpful comments and suggestions, which contributed significantly to the improvement of the manuscript.

Author information

Affiliations

Authors

Contributions

TL formulated the idea to correlate historical and actual observations. TL and AR reviewed historical data and wrote the manuscript. AD and AR did most of the fieldwork. TL performed data evaluation. AD cared for the database, carried out data quality assurance, extracted the data for the study region and collected recent data from other observers.

Corresponding author

Correspondence to Tim Laussmann.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Statement of Human and Animal Rights

For this type of study formal consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(XLSX 456 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Laussmann, T., Dahl, A. & Radtke, A. Lost and found: 160 years of Lepidoptera observations in Wuppertal (Germany). J Insect Conserv 25, 273–285 (2021). https://doi.org/10.1007/s10841-021-00296-w

Download citation

Keywords

  • Insect decline
  • Agriculture
  • Forestry
  • Moth
  • Butterfly