Skip to main content

Advertisement

Log in

Current distribution, microhabitat requirements and vulnerability of the Keeled Plump Bush-cricket (Isophya costata) at the north-western periphery of its range

  • ORIGINAL PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

Edge populations are of conservation importance because they typically suffer an elevated risk of extinction, possess low genetic variation and can be genetically distinct from core populations. Peripheral populations are generally characterized as being less abundant and more vulnerable to habitat change. In this study, we investigated the current distribution and microhabitat requirements of the Keeled Plump Bush-cricket (Isophya costata), a threatened species, at the north-western periphery of its range (Austrian-Slovak trans-border area, Central Europe). To clarify the current distribution pattern in relation to microhabitat requirements, we employed a comprehensive combination of microhabitat assessment and microrelief topography in a flood-plain area, which was supplemented by photo documentation created using a drone. We found that the distribution of the bush-cricket follows isolated occurrences with low densities. Regarding microhabitat requirements, we discovered a link between the distribution pattern of the bush-cricket and micro-elevations connected to dicotyledonous broadleaf plants. We assume that the novel information on species ecology found in this study could be a first step in obtaining sufficient data for further systematic monitoring. To set these findings for species conservation, it is necessary to mitigate the most serious threats, which are represented by early mowing and habitat degradation. Therefore, further detailed analysis of major threats and determination of the genetic structure of the species will be crucial to ensure appropriate conservation measures for the threatened peripheral bush-cricket metapopulation.

Implications for Insect Conservation

This research provides the novel information about microhabitat requirements of the threatened bush-cricket at the north-western edge of its range. Current distribution data together with detailed knowledge of the microhabitat requirements provide important ecological information, which could have significant implications for the further systematic monitoring and species conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Banásová V, Oťahelová H, Jarolímek I, Zaliberová M, Janauer GA, Husák Š (1994) The influence of important environmental factors on the vegetation structure in the alluvial plain of the Morava river. Ekológia 1:125–133

    Google Scholar 

  • Banásová V, Jarolímek I, Oťahelová H, Zaliberová M (1998) Inundation grasslands of the Morava River, Slovakia: plant communities and factors affecting biodiversity. In: Joyce CB., Wade PM (eds) Europaean wet grasslands – biodiversity, management and restoration, John Willey and Sons, pp. 111-136

  • Banásová V, Jarolímek I., Oťahelová H, Zaliberová M (2004) The ecotone vegetation on the Morava river floodplain (West Slovakia). Bulletin SBS suppl.1:223-234

  • Bauer N, Kenyeres Z (2006) Habitat preference studies of some species of the genus Isophya Brunner von Wattenwyl, 1878 (Orthoptera: Phaneropteridae) in the western part of the Carpathian Basin. J. Orthopt. Res. 15:175–185. https://doi.org/10.1665/1082-6467(2006)15[175:hpsoss]2.0.co;2

    Article  Google Scholar 

  • Berg H, Bieringer G, Sauberer N, Zuna-kratky T (1996) Verbreitung und Ökologie der Grossen Plumpschrecke (Isophya costata) an ihrem westlichen Arealrand (Österreich). Articulata 11:33-45. https://dgfoarticulata.de/downloads/articulata/articulata_XI_1996/berg_bieringer_sauberer_zuna_kratky_1996.pdf

  • Bieringer G (2017) Breitstirnige Plumpschrecke Isophya costata Brunner von Wattenwyl, 1878. In: Zuna-Kratky T, Landmann A, Illich I, Zechner L, Essl F, Lechner K, Ortner A, Weissmair W, Wöss G. Die Heuschrecken Österreichs, Denisia 39, pp. 262–265

  • Braun-Blanquet J (1964) Pflanzensoziologie. Springer Verlag, Wien, Grundzüge der Vegetationskunde

    Book  Google Scholar 

  • Chalmers AC, Erskine WD, Keene AF, Bush RT (2012) Relationship between vegetation, hydrology and fluvial landforms on an unregulated sand-bed stream in the Hunter Valley, Australia. Austral Ecol 37:193–203. https://doi.org/10.1111/j.1442-9993.2011.02262.x

    Article  Google Scholar 

  • Chobanov DP, Hochkirch A, Iorgu IS, Ivkovic S, Kristin A, Lemonnier-Darcemont M, Pushkar T, Sirin D, Skejo J, Szovenyi G, Vedenina V, Willemse LPM (2016) Isophya costata. The IUCN Red List of Threatened Species 2016:e.T44709818A70268719. http://doi.org/https://doi.org/10.2305/IUCN.UK.2016-3.RLTS.T44709818A70268719.en

  • Čelik T, Vreš B (2018) Microtopography determines the habitat quality of a threatened peatland butterfly at its southern range margin. J Insect Conserv 22:707–720. https://doi.org/10.1007/s10841-018-0095-3

    Article  Google Scholar 

  • Diamond JS, McLaughlin DL, Slesak RA, Stovall A (2020) Microtopography is a fundamental organizing structure of vegetation and soil chemistry in black ash wetlands. Biogeosciences 17:901–915. https://doi.org/10.5194/bg-17-901-2020

    Article  Google Scholar 

  • Ellenberg H, Weber HE, Düll R, Wirth V, Werner W, Paulißen D (1992) Zeigerwerte von Pflanzen in Mitteleuropa. Scr Geobot 18:1–248

    Google Scholar 

  • Gardiner T, Hill J, Chesmore D (2005) Review of the methods frequently used to estimate the abundance of orthoptera in grassland ecosystems. J Insect Conserv 9:151–173. https://doi.org/10.1007/s10841-005-2854-1

    Article  Google Scholar 

  • GKÚ, NLC (2017) Orthofotomozaika, Geodetický a kartografický ústav Bratislava/GKÚ/, Chlumeckého 4, Bratislava. https://www.geoportal.sk/en/

  • Gill HK, Goyal G, Chahil G (2017) Insect diapause: a review. J Agr Sci Tech 7:454–473. https://doi.org/10.17265/2161-6256/2017.07.002

    Article  Google Scholar 

  • Hamilton SK, Kellndorfer J, Lehner B, Tobler M (2007) Remote sensing of floodplain geomorphology as a surrogate for biodiversity in a tropical river system (Madre de Dios, Peru). Geomorphology 89:23–38. https://doi.org/10.1016/j.geomorph.2006.07.024

    Article  Google Scholar 

  • Hardie DC, Hutchings JA (2010) Evolutionary ecology at the extremes of species’ ranges. Environ Rev 18:1–20. https://doi.org/10.1139/A09-014

    Article  Google Scholar 

  • Hegedüšová Vantarová K, Škodová I (eds.) (2014) Vegetation of Slovakia. Plant communities of Slovakia. 5. Grassland vegetation, Slovak Academy of Sciences, Bratislava

  • Hennekens SM, Schaminée JHJ (2001) TURBOVEG, a comprehensive data base management system for vegetation data. J Veg Sci 12:589–591. https://doi.org/10.2307/3237010

    Article  Google Scholar 

  • Hering D, Gerhard M, Manderbach R, Reich M (2004) Impact of a 100-year flood on vegetation, benthic invertebrates, riparian fauna and large woody debris standing stock in an alpine floodplain. River Res Appl 20:445–457. https://doi.org/10.1002/rra.759

    Article  Google Scholar 

  • Holt RD, Keitt TH (2005) Species’ borders: a unifying theme in ecology. Oikos 108:3–6. https://doi.org/10.1111/j.0030-1299.2005.13145.x

    Article  Google Scholar 

  • Ingrisch S, Köhler G (1998) Die Heuschrecken Mitteleuropas. Westarp Wissenschaften, Magdeburg

    Google Scholar 

  • Janišová M, Hájková P, Hegedüšová K, Hrivnák R, Kliment J, Michálková D, Ružičková H, Řezníčková M, Tichý L, Škodová I, Uhliarová E, Ujházy K, Zaliberová M (2007) Travinnobylinná vegetácia Slovenska - elektronický expertný systém na identifikáciu syntaxónov. Botanický ústav SAV, Bratislava

    Google Scholar 

  • Jarolímek I, Šibíková M, Zaliberová M, Májeková J, Bacigál T, Medvecká J (2017) Dynamics of alluvial grasslands: a 25-year study on the Morava river (Slovakia). Phyton 57:91–106

    Google Scholar 

  • Kenyeres Z, Rácz IA, Varga Z (2009) Endemism hot spots, core areas, and disjuctions in Europaean Orthoptera. Acta Zool Cracov 52B:189–211. https://doi.org/10.3409/azc.52b

    Article  Google Scholar 

  • Kenyeres Z, Szentirmai I (2017) Effects of different mowing regimes on orthopterans of Central-European mesic hay meadows. J Orthoptera Res 26:29–37. https://doi.org/10.3897/jor.26.14549

    Article  Google Scholar 

  • Kenyeres Z, Takács G, Bauer N (2017) A magyar tarsza (Isophya costata) a Kisalföl- dön és a Nyugat-magyarországi peremvidéken. Rence 2:111-122. https://www.ferto-hansag.hu/upload/document/450/rence02_05_kenyeres-al_111-122_jh0e.pdf

  • Kenyeres Z, Takács G, Bauer N (2018) Effects of climatic factors on yearly population sizes of Isophya costata (Orthoptera). North-West J Zool 14:13-16. https://biozoojournals.ro/nwjz/content/v14n1/nwjz_e171102_Kenyeres.pdf

  • Krištín A, Kaňuch P (2018) Species diversity and conservation status of grasshoppers and crickets in Slovakia. In: Krištín A, Kaňuch P, Hochkirch A (eds) II. European Congress on Orthoptera Conservation, Institute of Forest Ecology, Slovak Academy of Sciences, Zvolen, p 18

    Google Scholar 

  • Larson DP, O’Neill KM, Kemp WP (1999) Evaluation of the accuracy of sweep sampling in determining grasshopper (Orthoptera: Acrididae) community composition. J Agr Urban Entomol 16:207-214. https://scentsoc.org/Volumes/JAUE/v16/207.pdf

  • Lawson CR, Bennie J, Hodgson JA, Thomas CD, Wilson RJ (2014) Topographic microclimates drive microhabitat associations at the range margin of a butterfly. Ecography 37:732–740. https://doi.org/10.1111/ecog.00535

    Article  Google Scholar 

  • Lohr M, Collins BM, Williams CK, Castelli PM (2011) Life on the edge: Northern bobwhite ecology at the northern periphery of their range. J Wildl Manag 75:52–60. https://doi.org/10.1002/jwmg.25

    Article  Google Scholar 

  • Marhold K (1998) Ferns and flowering plants. In: Marhold K, Hondák F (eds) Checklist of non-vascular and vascular plants of Slovakia. Veda, Bratislava, pp 333–687

    Google Scholar 

  • Miró A, O’Brien D, Hall J, Jehle R (2017) Habitat requirements and conservation needs of peripheral populations: the case of the great crested newt (Triturus cristatus) in the Scottish Highlands. Hydrobiologia 792:169–181. https://doi.org/10.1007/s10750-016-3053-7

    Article  Google Scholar 

  • Mucina L, Bültmann H, Dierßen K, Theurillat JP, Dengler J, Čarni A, Šumberová K, Raus T, Di Pietro R et al (2016) Vegetation of Europe: hierarchical floristic classification system of plant, lichen, and algal communities. Appl Veg Sci 19:3–264. https://doi.org/10.1111/avsc.12257

    Article  Google Scholar 

  • Nagl Ch, Zuna-Kratky T (2019) Der Wachtelkönig Crex crex in den March-Thaya-Auen im Jahr 2019. Unpubl. report, AURING – Biologische Station Hohenau – Ringelsdorf. p. 8

  • Nuhlíčková S, Svetlík J, Krištín A (2017) First record of Keeled Plump bush-cricket (Isophya costata Brunner von Wattenwyl, 1878) (Orthoptera, Tettigoniidae) in Slovakia. Trav Mus Natl Hist Nat Grigore Antipa 60:435–440. https://doi.org/10.1515/travmu-2017-0009

    Article  Google Scholar 

  • Oťahelová H, Banásová V, Jarolímek I, Zaliberová M, Janauer GA, Oťahel J, Feranec J (1995) Vegetation units of the Morava river floodplain ecotones area. Biológia 50:367–375

    Google Scholar 

  • Parinova TA, Volkov AG, Popova AA (2018) Microscale heterogeneity of floodplain meadows (using the example of the delta of the Northern Dvina River). Contemp Probl Ecol 11:35–44. https://doi.org/10.1134/S1995425518010110

    Article  Google Scholar 

  • Pearman PB, D’Amen M, Graham CH, Thuiller W, Zimmermann NE (2010) Within-taxon niche structure: niche conservatism, divergence and predicted effects of climate change. Ecography 33:990–1003. https://doi.org/10.1111/j.1600-0587.2010.06443.x

    Article  Google Scholar 

  • Petrou ZI, Manakos I, Stathaki T (2015) Remote sensing for biodiversity monitoring: a review of methods for biodiversity indicator extraction and assessment of progress towards international targets. Biodivers Conserv 24:2333–2363. https://doi.org/10.1007/s10531-015-0947-z

    Article  Google Scholar 

  • QGIS.org (2020) QGIS 3.4.4-Madeira. Geographic Information System Developers Manual. QGIS Association. http://www.qgis.org

  • R Core Team (2018) A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org

  • Rada S, Štepánová L, Losík J, Šipoš J, Holuša J, Kuras T (2015) How does Oedipoda germanica (Orthoptera: Acrididae) cope on the northern edge of its distribution? A demographical study of a completely isolated population. Eur J Entomol 112:486–492. https://doi.org/10.14411/eje.2015.062

    Article  Google Scholar 

  • Rayburg S, Thoms M, Neave M (2009) A comparison of digital elevation models generated from different data sources. Geomorphology 106:261–270. https://doi.org/10.1016/j.geomorph.2008.11.007

    Article  Google Scholar 

  • Rothenbücher J, Schaefer M (2006) Submersion tolerance in floodplain arthropod communities. Basic Appl Ecol 7:398–408. https://doi.org/10.1016/j.baae.2006.05.005

    Article  Google Scholar 

  • Rūsiņa S, Pušpure I, Gustiņa L (2013) Diversity patterns in transitional grassland areas in floodplain landscapes with different heterogeneity. Tuexenia 33:347-369. https://www.zobodat.at/pdf/Tuexenia_NS_33_0347-0369.pdf

  • Schalles JF, Hladik CM, Lynes AA, Pennings SC (2013) Landscape estimates of habitat types, plant biomass, and invertebrate densities in a Georgia salt marsh. Oceanography 26:88–97. https://doi.org/10.5670/oceanog.2013.50

    Article  Google Scholar 

  • Scown M, Thoms MC, De Jager NR (2016) Measuring spatial patterns in floodplains: a step towards understanding the complexity of floodplain ecosystems. In: Gilvear DJ, Greenwood MT, Thoms MC, Wood PJ (eds) River science – research and management for the 21st century, Wiley Blackwell, pp. 103-127

  • Šeffer J, Stanová V (1999) Morava River Floodplain Meadows - Importance, Restoration and Management. DAPHNE - Centre for Applied Ecology, Bratislava. https://daphne.sk/wp-content/uploads/2013/12/morava_kniha_web.pdf

  • Szövényi G, Szekeres O (2011) First record of Isophya costata in Serbia (Orthoptera : Phaneropteridae). Folia Ent Hung 72:5-7. https://publication.nhmus.hu/pdf/folentom/FoliaEntHung_2011_Vol_72_005.pdf

  • Tichý L (2002) JUICE, software for vegetation classification. J Veg Sci 13:451-453. https://www.sci.muni.cz/botany/juice/jvs.pdf

  • Vadkerti E, Szövényi G (2005) Habitat preference of four protected bush-cricket species (Orthoptera, Phaneropteridae, Isophya) in South Hungary. Biologia (Bratislava) 60:545–549

    Google Scholar 

  • Vivian-Smith G (1997) Microtopographic heterogeneity and floristic diversity in experimental wetland communities. J Ecol 85:71–82. https://doi.org/10.2307/2960628

    Article  Google Scholar 

  • Wagner A (2015) Handlungsbedarf Isophya costata. Breitstirnige Plumpschrecke, Knollconsult Umweltplanung ZT GmbH, Wien

    Google Scholar 

  • Westhoff V, van der Maarel E (1973) The Braun-Blanquet approach. In: Whittaker RH (ed) Classification of Plant Communities. Junk Publishers, The Hague, Dr W, pp 289–399

    Google Scholar 

  • Wolf KL, Ahn C, Noe GB (2011) Microtopography enhances nitrogen cycling and removal in created mitigation wetlands. Ecol Eng 37:1398–1406. https://doi.org/10.1016/j.ecoleng.2011.03.013

    Article  Google Scholar 

  • Zelnik I, Čarni A (2008) Distribution of plant communities, ecological strategy types and diversity along a moisture gradient. Community Ecol 9:1–9. https://doi.org/10.1556/ComEc.9.2008.1.1

    Article  Google Scholar 

  • Zuna-Kratky T (2015) Abgrenzung und Zustandsbewertung von Brenndolden-Auenwiesen in den March-Thaya-Auen. Niederösterreichische Landesregierung, RU5 - Abteilung Naturschutz, St. Pölten.

  • Zuna-Kratky T, Karner-Ranner E, Lederer E, Braun B, Berg HM, Denner M, Bieringer G, Ranner A, Zechner L (2009) Verbreitungsatlas der Heuschrecken und Fangschrecken Ostösterreichs. Verlag Naturhistorisches Museum Wien, Wien

    Google Scholar 

Download references

Acknowledgements

Our special thanks go to ÖGEF—Österreichische Gesellschaft für Entomofaunistik for the support of this study. We are grateful to F. Steiner (viadonau) for kindly providing the Digital Elevation Model used in our study. Our special thanks are addressed to Zoltán Kenyeres and Iveta Škodová for their valuable comments and manuscript improvements. Finally, we are grateful to the anonymous reviewers for their crucial improvements of this study and to our children, who patiently accompanied us in the field.

Funding

This study was funded by ÖGEF – Österreichische Gesellschaft für Entomofaunistik (Grant Number 2018/01).

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by [SN], [JS], [MŠ], [IJ] and [TZK]. The first draft of the manuscript was written by [Soňa Nuhlíčková] and all the authors commented on previous versions of the manuscript. All the authors have read and approved the final manuscript. Conceptualization: [SN]; Methodology: [SN], [Mária Šibíková]; Formal analysis and investigation: [SN], [JS], [MŠ], [IJ] and [TZK]; Writing—original draft preparation: [SN]; Writing—review and editing: [MŠ], [IJ] and [TZK]. Funding acquisition: [SN]

Corresponding author

Correspondence to Soňa Nuhlíčková.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

All authors declare that we did not collect threatened arthropods from study areas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

10841_2020_280_MOESM1_ESM.xlsx

Online Resource 1 Abundance of males, females and the appropriate category of the Keeled Plump Bush-cricket in each study plot. Explanations: ID = identification code; LAT = latitude; LONG = longitude; ABUND_M = male abundance; ABUND_F = female abundance; VISUAL = visual detection; CALL = acoustic detection of calling males; VISUAL/CALL = both visual and acoustic detection. The ID of plots included in the study on habitat requirements are designated in bold (xlsx 13 kb)

10841_2020_280_MOESM2_ESM.xlsx

Online Resource 2 List of all plant species, syntaxon names and their respective cover (%) estimated by the extended 9-degree Braun-Blanquet cover-abundance scale in two representative plots. Explanations: black dot (.) = absence, (r) = rare occurrence, 1–3 individuals per plot, cross (+) = cover < 1%, (1) = cover 1–5%, 2a = cover 5–12.5%, 2b = cover 12.5–25%, 2m = widespread species with small habitus (juveniles), 3 = cover 25–50%, 4 = cover 50–75%, 5 = cover 75–100%. Abbreviations: sp. - species, ssp. - subspecies, agg. - aggregatum, sect. - section, s. str. - sensu stricto (xlsx 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nuhlíčková, S., Svetlík, J., Šibíková, M. et al. Current distribution, microhabitat requirements and vulnerability of the Keeled Plump Bush-cricket (Isophya costata) at the north-western periphery of its range. J Insect Conserv 25, 65–76 (2021). https://doi.org/10.1007/s10841-020-00280-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-020-00280-w

Keywords

Navigation