Skip to main content

Advertisement

Log in

Sheep herding in small grasslands promotes dung beetle diversity in a mountain forest landscape

  • ORIGINAL PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

It is assumed that the transformation of native forest into agricultural fields and grazing grasslands negatively affects biological diversity, and there are multiple cases documenting this pattern. For example, when lowland tropical forests are transformed into extensive cattle pastures, dung beetle richness, abundance and diversity decrease. However, in some cases, biodiversity may respond in the opposite direction. We describe dung beetle assemblages in a mountainous landscape where small grasslands (less than 7.5 ha) with sheep pastoralism are imbedded in a pine-oak forest matrix at the Mexican Transition Zone. We captured 14 species (1058 beetles) in 10 forest sites, and 20 species (2591 beetles) in 10 grassland sites. Generalized linear mixed models showed significantly higher values of species richness, diversity and abundance in grazing grasslands. We found 10 shared beetle species between forests and grassland sites, and a PERMANOVA revealed significant differences in species composition between habitats. Generalized linear models showed that dung beetle richness, abundance and diversity are related to dung availability, soil moisture and altitude, but not to soil hardness nor land use heterogeneity. Similarly, we did not find significant correlations between compositional dissimilarity (beta diversity) and dung availability nor land use heterogeneity. Our results document how traditional sheep herding in small grassland patches embedded in a forest matrix promotes the diversity of dung beetle assemblages, showing that biodiversity can be enhanced by human activities.

Implications for insect conservation

The results of this study indicate that grassland patches embedded in the forest matrix where traditional small herds of sheep graze, contribute to increasing landscape complexity by providing a mosaic of environmental conditions that promote a high diversity of dung beetles on a regional scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alvarado F, Escobar F, Williams DR, Arroyo-Rodríguez V, Escobar-Hernández F (2018) The role of livestock intensification and landscape structure in maintaining tropical biodiversity. J Appl Ecol 55:185–194. https://doi.org/10.1111/1365-2664.12957

    Article  Google Scholar 

  • Alvarado F, Dáttilo W, Escobar F (2019) Linking dung beetle diversity and its ecological function in a gradient of livestock intensification management in the Neotropical region. Appl Soil Ecol 143:173–180. https://doi.org/10.1016/j.apsoil.2019.06.016

    Article  Google Scholar 

  • Alkemade R, Reid RS, van den Berg M, de Leeuw J, Jeuken M (2013) Assessing the impacts of livestock production on biodiversity in rangeland ecosystems. PNAS 110(52):20900–20905

    Article  CAS  Google Scholar 

  • Anderson MJ, Walsh DC (2013) PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: what null hypothesis are you testing? Ecol Monogr 83:557–574. https://doi.org/10.1890/12-2010.1

    Article  Google Scholar 

  • Arroyo-Cabrales J, Carreño AL, Lozano-García S, Montellano-Ballesteros M (2008) La diversidad en el pasado. In: Dirzo R, González R, Sarukhán March IJ. (eds) Capital natural de México, vol. I: Conocimiento actual de la biodiversidad. CONABIO, México, pp 227–262

    Google Scholar 

  • Arroyo-Rodríguez V, Rös M, Escobar F, Melo FP, Santos BA, Tabarelli M, Chazdon R (2013) Plant β‐diversity in fragmented rain forests: testing floristic homogenization and differentiation hypotheses. J Ecol 101:1449–1458. https://doi.org/10.1111/1365-2745.12153

    Article  Google Scholar 

  • Barlow J, Louzada J, Parry L, Hernández MIM, Hawes J, Peres CA, Vaz-de‐Mello FZ, Gardner TA (2010) Improving the design and management of forest strips in human‐dominated tropical landscapes: a field test on Amazonian dung beetles. J Appl Ecol 47:779–788. https://doi.org/10.1111/j.1365-2664.2010.01825.x

    Article  Google Scholar 

  • Barragán F, Moreno CE, Escobar F, Bueno-Villegas J, Halffter G (2014) The impact of grazing on dung beetle diversity depends on both biogeographical and ecological context. J Biogeogr 41:1991–2002. https://doi.org/10.1111/jbi.12351

    Article  Google Scholar 

  • Bates D, Kliegl R, Vasishth S, Baayen H (2015) Parsimonious mixed models arXiv: 1506.04967 [stat.ME]

  • Bicknell JE, Phelps SP, Davies RG, Mann DJ, Struebig MJ, Davies ZG (2014) Dung beetles as indicators for rapid impact assessments: evaluating best practice forestry in the neotropics. Ecol Indic 43:154–161. https://doi.org/10.1016/j.ecolind.2014.02.030

    Article  Google Scholar 

  • Birkett AJ, Blackburn GA, Menéndez R (2018) Linking species thermal tolerance to elevational range shifts in upland dung beetles. Ecography 41:1510–1519. https://doi.org/10.1111/ecog.03458

    Article  Google Scholar 

  • Bogoni JA, da Silva PG, Peres CA (2019) Co-declining mammal–dung beetle faunas throughout the Atlantic Forest biome of South America. Ecography. https://doi.org/10.1111/ecog.04670

    Article  Google Scholar 

  • Buse J, Šlachta M, Sladecek FXJ, Pung M, Wagner T, Entling MH (2015) Relative importance of pasture size and grazing continuity for the long-term conservation of European dung beetles. Biol Conserv 187:112–119. https://doi.org/10.1016/j.biocon.2015.04.011

    Article  Google Scholar 

  • Cabrero-Sañudo FJ, Trotta-Moreu N, Martínez I (2007) Phenology, reproductive cycles, and species composition of a dung beetle community (Coleoptera: Scarabaeoidea) from a high mountain pasture system on the Oriental Neovolcanic axis (Veracruz, Mexico). Prol Entomoc Sol Wash 109:813–828

    Google Scholar 

  • Carrara E, Arroyo-Rodríguez V, Vega-Rivera JH, Schondube JE, de Freitas SM, Fahrig L (2015) Impact of landscape composition and configuration on forest specialist and generalist bird species in the fragmented Lacandona rainforest. Mexico Biol Conserv 184:117–126. https://doi.org/10.1016/j.biocon.2015.01.014

    Article  Google Scholar 

  • Challenger A, Soberón J (2008) Los ecosistemas terrestres. In: Dirzo R, González R, Sarukhán J (eds) Capital natural de México, vol. I: Conocimiento actual de la biodiversidad. CONABIO, Mexico, pp 87–108

    Google Scholar 

  • Chao A, Jost L (2012) Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93:2533–2547. https://doi.org/10.1890/11-1952.1

    Article  PubMed  Google Scholar 

  • Chao A, Chazdon RL, Colwell RK, Shen TJ (2005) A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecol Lett 8:148–159. https://doi.org/10.1111/j.1461-0248.2004.00707.x

    Article  Google Scholar 

  • Chao A, Gotelli NJ, Hsieh TC, Sander EL, Ma KH, Colwell RK, Ellison AM (2014) Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol Monogr 84:45–67. https://doi.org/10.1890/13-0133.1

    Article  Google Scholar 

  • Chao A, Shen TJ (2010) User’s guide for program SPADE (species prediction and diversity estimation). National Tsing Hua University, Hsinchu

    Google Scholar 

  • Chown SL (2001) Physiological variation in insects: hierarchical levels and implications. J Insect Physiol 47:649–660. https://doi.org/10.1016/S0022-1910(00)00163-3

    Article  CAS  PubMed  Google Scholar 

  • Clarke KR, Gorley RN (2015) Getting started with PRIMER v7. PRIMER-E. Plymouth Marine LaboratoryPRIMER-E, Plymouth

    Google Scholar 

  • Comisión Nacional de Áreas Naturales Protegidas, México (CONANP) (2005) Programa de conservación y manejo: Parque Nacional El Chico, México. Comisión Nacional de Áreas Naturales Protegidas

  • Corlett RT (2015) The anthropocene concept in ecology and conservation. Trends Ecol Evol 30:36–41. https://doi.org/10.1016/j.tree.2014.10.007

    Article  PubMed  Google Scholar 

  • Correa CMA, Braga RF, Louzada J, Menéndez R (2019) Dung beetle diversity and functions suggest no major impacts of cattle grazing in the Brazilian Pantanal wetlands. Ecol Entomol 44:524–533. https://doi.org/10.1111/een.12729

    Article  Google Scholar 

  • de Castro Solar RR, Barlow J, Ferreira J, Berenguer E, Lees AC, Thomson JR, Louzada J, Maués M, Moura NG, Oliveira VHF, Chaul JCM, Schoereder JH, Vieira ICG, Mac Nally R, Gardner TA (2015) How pervasive is biotic homogenization in human-modified tropical forest landscapes? Ecol Lett 18:1108–1118. https://doi.org/10.1111/ele.12494

    Article  Google Scholar 

  • Delgado L, Márquez J (2006) Estado del conocimiento y conservación de los coleópteros Scarabaeoidea (Insecta) del estado de Hidalgo, México. Acta Zool Mex 22(2):57–108

    Google Scholar 

  • Deloya C, Ibáñez-Bernal S (2000) New species of Aphodiinae from Mexico and a key to species of Cephalocyclus Dellacasa, Gordon and Dellacasa (Coleoptera: Scarabaeidae). Coleopts Bull 54(3):318–324. https://doi.org/10.1649/0010-065X(2000)054[0318:NSOAFM]2.0.CO;2

    Article  Google Scholar 

  • Echeverría C, Coomes D, Salas J, Rey-Benayas JM, Lara A, Newton A (2006) Rapid deforestation and fragmentation of Chilean temperate forests. Biol Conserv 130(4):481–494. https://doi.org/10.1016/j.biocon.2006.01.017

    Article  Google Scholar 

  • Edmonds WD (1994) Revision of Phanaeus Macleay, a New World genus of Scarabaeine dung beetles (Coleoptera, Scarabaeinae). Contrib Sci 443:1–105

    Google Scholar 

  • Errouissi F, Jay-Robert P (2019) Consequences of habitat change in euromediterranean landscapes on the composition and diversity of dung beetle assemblages (Coleoptera, Scarabaeoidea). J Insect Conserv 23(1):15–28. https://doi.org/10.1007/s10841-018-0110-8

    Article  Google Scholar 

  • Escobar F, Chacón-de-Ulloa P (2000) Distribución espacial y temporal en un gradiente de sucesión de la fauna de coleópteros coprófagos (Scarabaeinae, Aphodiinae) en un bosque tropical montano, Nariño-Colombia. Rev Biol Trop 48:961–975

    CAS  PubMed  Google Scholar 

  • Escobar F, Halffter G, Arellano L (2007) From forest to pasture: an evaluation of the influence of environment and biogeography on the structure of beetle (Scarabaeinae) assemblages along three altitudinal gradients in the Neotropical region. Ecography 30:193–208. https://doi.org/10.1111/j.0906-7590.2007.04818.x

    Article  Google Scholar 

  • ESRI (2013) ArcGIS: Release 10.1 Edition. Environmental Systems Resource Institute, Redlands

    Google Scholar 

  • Ethier K, Fahrig L (2011) Positive effects of forest fragmentation, independent of forest amount, on bat abundance in eastern Ontario, Canada. Landsc Ecol 26:865–876. https://doi.org/10.1007/s10980-011-9614-2

    Article  Google Scholar 

  • Fahrig L (2007) Non-optimal animal movement in human‐altered landscapes. Funct Ecol 21:1003–1015. https://doi.org/10.1111/j.1365-2435.2007.01326.x

    Article  Google Scholar 

  • Fahrig L (2015) Just a hypothesis: a reply to Hanski. J Biogeogr 42:993–994. https://doi.org/10.1111/jbi.12504

    Article  Google Scholar 

  • Fahrig L, Baudry J, Brotons L, Burel FG, Crist TO, Fuller RJ, Sirami C, Siriwardena GM, Martin JL (2011) Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol Lett 14:101–112. https://doi.org/10.1111/j.1461-0248.2010.01559.x

    Article  PubMed  Google Scholar 

  • Faith DP, Minchin PR, Belbin L (1987) Compositional dissimilarity as a robust measure of ecological distance. Vegetatio 69:57–68

    Article  Google Scholar 

  • Favila ME (2014) Historical, biogeographical and ecological factors explain the success of some native dung beetles after the introduction of cattle in Mexico. Pastos 42:161–181

    Google Scholar 

  • Feer F, Pincebourde S (2005) Diel flight activity and ecological segregation within an assemblage of tropical forest dung and carrion beetles. J Trop Ecol 21:21–30. https://doi.org/10.1017/S0266467404002056

    Article  Google Scholar 

  • Frank K, Hülsmann M, Assmann T, Schmitt T, Blüthgen N (2017) Land use affects dung beetle communities and their ecosystem service in forests and grasslands. Agric Ecosyst Environ 243:114–122. https://doi.org/10.1016/j.agee.2017.04.010

    Article  Google Scholar 

  • Gerisch M (2011) Habitat disturbance and hydrological parameters determine the body size and reproductive strategy of alluvial ground beetles. ZooKeys 100:353. https://doi.org/10.3897/zookeys.100.1427

    Article  Google Scholar 

  • Geist HJ, Lambin EF (2001) What drives tropical deforestation? A meta-analysis of proximate and underlying causes of deforestation based on subnational scale case study evidence. LUCC Report Series 4: 116 University of Louvian, Louvian-la-Neuve, Belgium

  • González-Tokman D, Martínez I, Villalobos-Ávalos Y, Munguía-Steyer R, Ortiz-Zayas M, del R, Cruz-Rosales M and Lumaret JP (2017) Ivermectin alters reproductive success, body condition and sexual trait expression in dung beetles. Chemosphere 178:129–135. https://doi.org/10.1016/j.chemosphere.2017.03.013

    Article  CAS  PubMed  Google Scholar 

  • Garduño-Villafaña A (2015) Diagnóstico estático de la ovinocultura en los municipios de Donato Guerra y Villa de Allende, Estado de México. (2014–2015). Editor Universidad Autónoma del Estado de México

  • Haddad NM, Brudvig LA, Clobert J, Davies KF, Gonzalez A, Holt RD, Lovejoy TE, Sexton JO, Austin MP, Collins CD, Cook WM, Damschen EI, Ewers RM, Foster BL, Jenkins CN, King AJ, Laurance WF, Levey DJ, Margules ChR, Melbourne BA, Nicholls AO, Orrock JL, Song D-X, Townshend JR (2015) Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci Adv 1:2 e1500052. https://doi.org/10.1126/sciadv.1500052

    Article  PubMed  Google Scholar 

  • Halffter G (1976) Distribución de los insectos en la Zona de Transición Mexicana. Folia Entomol Mex 35:1–64

    Google Scholar 

  • Halffter G, Matthews EG (1966) The natural history of dung beetles of the subfamily Scarabaeinae (Coleoptera, Scarabaeidae). Folia Entomol Mex 12:1–312

    Google Scholar 

  • Halffter G, Morrone JJ (2017) An analytical review of Halffter’s Mexican transition zone, and its relevance for evolutionary biogeography, ecology and biogeographical regionalization. Zootaxa 4226:1–46. https://doi.org/10.11646/zootaxa.4226.1.1

    Article  Google Scholar 

  • Halffter G (2019) La Zona de Transición Mexicana: Referente obligado para una nueva ponderación de la riqueza biológica de México. En: Moreno CE (Ed) La biodiversidad en un mundo cambiante: Fundamentos teóricos y metodológicos para su estudio. Universidad Autónoma del Estado de Hidalgo/Libermex, Ciudad de México, pp. 129–155

  • Hanski I, Cambefort Y (1991) Dung beetle ecology. Princeton University Press, Princeton

    Book  Google Scholar 

  • Heinrich B, Bartholomew GA (1979) The ecology of the African dung beetle. Sci Am 241:146–157. https://www.jstor.org/stable/24965341

    Article  Google Scholar 

  • Hernández ZJS (2000) La caprinocultura en el marco de la ganadería poblana (México): contribución de la especie caprina y sistemas de producción. Arch Zootecnia 49(187):341–352

    Google Scholar 

  • Hill MO (1973) Diversity and evenness: a unifying notation and its consequences. Ecology 54:427–432. https://doi.org/10.2307/1934352

    Article  Google Scholar 

  • Howden HF, Génier F (2004) Seven new species of Onthophagus Latreille from Mexico and the United States (Coleoptera: Scarabaeidae, Scarabaeinae). Fabreries 29:53–76

    Google Scholar 

  • Hsieh TC, Ma KH, Chao A (2013) iNEXT online: interpolation and extrapolation (Version 1.0) [Software]. http://chao.stat.nthu.edu.tw/blog/software-downlod/ (2nd September 2018)

  • IUCN (2020) The IUCN red list of threatened species. https://www.iucnredlist.org/ (Accessed 2 Aug 2020)

  • Jay-Robert P, Niogret J, Errouissi F, Labarussias M, Paoletti É, Luis MV, Lumaret JP (2008) Relative efficiency of extensive grazing vs. wild ungulates management for dung beetle conservation in a heterogeneous landscape from Southern Europe (Scarabaeinae, Aphodiinae, Geotrupinae). Biol Conserv 141(11):2879–2887. https://doi.org/10.1016/j.biocon.2008.09.001

    Article  Google Scholar 

  • Jost L (2006) Entropy and diversity. Oikos 113:363–375. https://doi.org/10.1111/j.2006.0030-1299.14714.x

    Article  Google Scholar 

  • Kohlman B (1991) Dung beetles in Subtropical North America. In: Hanski I, Cambefort (eds) Dung beetle ecology. Princeton University Press, Princeton, pp 166–132

    Google Scholar 

  • Larsen TH, Forsyth A (2005) Trap spacing and transect design for dung beetle biodiversity studies. Biotropica 37:322–325. https://doi.org/10.1111/j.1744-7429.2005.00042.x

    Article  Google Scholar 

  • Leal AI, Acácio M, Meyer CFJ, Rainho A, Palmeirim JM (2019) Grazing improves habitat suitability for many ground foraging birds in Mediterranean wooded grasslands. Agric Ecosyst Environ 270:1–8. https://doi.org/10.1016/j.agee.2018.10.012

    Article  Google Scholar 

  • Lobo JM (2001) Decline of roller populations on the Iberian Peninsula during 20th Century. Biol Conserv 97:43–50. https://doi.org/10.1016/S0006-3207(00)00093-8

  • Malhi Y (2017) The concept of the Anthropocene. Annu Rev Environ Resour 42:77–104. https://doi.org/10.1146/annurev-environ-102016-060854

    Article  Google Scholar 

  • Manning P, Cutler GC (2018) Ecosystem functioning is more strongly impaired by reducing dung beetle abundance than by reducing species richness. Agric Ecosyst Environ 264:9–14. https://doi.org/10.1016/j.agee.2018.05.002

    Article  Google Scholar 

  • Martínez-Falcón AP, Zurita GA, Ortega-Martínez IJ, Moreno CE (2018) Populations and assemblages living on the edge: dung beetle responses to forests-pasture ecotones. PeerJ 6:e6148. https://doi.org/10.7717/peerj.6148

    Article  PubMed  PubMed Central  Google Scholar 

  • Medrano JA (2000) Recursos animales locales del centro de México. Arch Zootecnia 49(187):385–390

    Google Scholar 

  • Melville EG (1997) A plague of sheep: environmental consequences of the conquest of Mexico. Cambridge University Press, Cambridge

  • Molina Sánchez A, Delgado P, González-Rodríguez A, González C, Gómez-Tagle Rojas A, Lopez-Toledo L (2019) Spatio-temporal approach for identification of critical conservation areas: a case study with two pine species from a threatened temperate forest in Mexico. Biodivers Conserv. Oxford https://doi.org/10.1007/s10531-019-01767-y

  • Morón MA (2003) Atlas de escarabajos de México. Coleoptera: Lamelicornia. Vol. II Familias Scarabaeidae, Trogidae, Passalidae y Lucanidae. Argania editio. Barcelona

  • Morrone JJ, Escalante T, Rodríguez-Tapia G (2017) Mexican biogeographic provinces: Map and shapefiles. Zootaxa 4277(2):277–279. https://doi.org/10.11646/zootaxa.4277.2.8

    Article  PubMed  Google Scholar 

  • Naranjo EJ, Dirzo R, López-Acosta JC, Rendón-von-Osten J, Reuter A, Sosa-Nishizaki Ó (2009) Impacto de los factores antropogénicos de afectación directa a las poblaciones silvestres de flora y fauna. In: Dirzo R, González R, March IJ. Sarukhán (eds) Capital natural de México, vol II. Estado de conservación y tendencia de cambio, CONABIO, Mexico City, pp 247–276

    Google Scholar 

  • Nichols E, Larsen T, Spector S, Davis AL, Escobar F, Favila M, Vulinec K, The Scarabaeinae Research Network (2007) Global dung beetle response to tropical forest modification and fragmentation: a quantitative literature review and meta-analysis. Biol Conserv 137:1–19. https://doi.org/10.1016/j.biocon.2007.01.023

    Article  Google Scholar 

  • Nichols E, Spector S, Louzada J, Larsen T, Amezquita S, Favila ME, Network TSR (2008) Ecological functions and ecosystem services provided by Scarabaeinae dung beetles. Biol Conserv 141:1461–1474. https://doi.org/10.1016/j.biocon.2008.04.011

    Article  Google Scholar 

  • Nichols E, Gardner TA, Peres CA, Spector S, Scarabaeinae Research Network (2009) Co-declining mammals and dung beetles: an impending ecological cascade. Oikos, 118: 481–487 https://doi.org/10.1111/j.1600-0706.2009.17268.x

    Article  Google Scholar 

  • Nichols E, Gardner TA (2011) Dung beetles as a candidate study taxon in applied biodiversity conservation research. In: Simmons LW, Ridsdill-Smith TJ (eds) Ecology and evolution of dung beetles pp. Blackwell Publishing Ltd, Oxford, pp 267–291

    Chapter  Google Scholar 

  • Nichols E, Uriarte M, Bunker DE, Favila ME, Slade EM, Vulinec K, Larsen T, Vaz-de-Mello FZ, Louzada J, Naeem S, Spector SH (2013) Trait-dependent response of dung beetle populations to tropical forest conversion at local and regional scales. Ecology 94:180–189. https://doi.org/10.1890/12-0251.1

    Article  PubMed  Google Scholar 

  • Numa C, Verdú JR, Sánchez A, Galante E (2009) Effect of landscape structure on the spatial distribution of Mediterranean dung beetle diversity. Divers Distrib 15(3):489–501. https://doi.org/10.1111/j.1472-4642.2009.00559.x

    Article  Google Scholar 

  • Ortega-Martínez IJ, Arellano L, Rosas F, Castellanos I, Rios-Díaz CL, Moreno CE (2020) Assembly mechanisms of dung beetle communities in temperate forests and grazing pastures. Sci Rep 10:391. https://doi.org/10.1038/s41598-019-57278-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paradis E, Schliep K (2018) ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35:526–528

    Article  Google Scholar 

  • Peck SB, Forsyth A (1982) Composition, structure, and competitive behavior in a guild of Ecuadorian rain forest dung beetles (Coleoptera; Scarabaeidae). Can J Zool 60:1624–1634. https://doi.org/10.1139/z82-213

    Article  Google Scholar 

  • Pennycuick CJ (1989) Bird flight performance. Oxford University Press, Oxford

  • Perfecto I, Vandermeer J (2010) The agroecological matrix as alternative to the land-sparing/agriculture intensification model. Proc Nat Acad Sci 107:5786–5791. https://doi.org/10.1073/pnas.0905455107

    Article  PubMed  Google Scholar 

  • Perrin W, Moretti M, Vergnes A, Borcard D, Jay-Robert P (2020) Response of dung beetle assemblages to grazing intensity in two distinct bioclimatic contexts. Agric Ecosyst Environ 289:106740. https://doi.org/10.1016/j.agee.2019.106740

    Article  Google Scholar 

  • Philips TK, Pretorius E, Scholtz CH (2004) A phylogenetic analysis of dung beetles (Scarabaeinae: Scarabaeidae): unrolling an evolutionary history. Invertebr Syst 18:53–88. https://doi.org/10.1071/IS03030

    Article  Google Scholar 

  • Pryke JS, Roets F, Samways MJ (2013) Importance of habitat heterogeneity in remnant patches for conserving dung beetles. Biodivers Conserv 22(12):2857–2828. https://doi.org/10.1007/s10531-013-0559-4

    Article  Google Scholar 

  • R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/ (5 July 2018)

  • Sánchez-Rojas G, Aguilar-Miguel C, Hernández-Cid E (2009) Estudio poblacional y uso de hábitat por el venado cola blanca (Odocoileus virginianus) en un bosque templado de la Sierra de Pachuca, Hidalgo, México. Trop Conserv Sci 2(2):204–214. https://doi.org/10.1177/194008290900200207

    Article  Google Scholar 

  • Sands B, Wall R (2018) Sustained parasiticide use in cattle farming affects dung beetle functional assemblages. Agric Ecosyst Environ 265:226–235. https://doi.org/10.1016/j.agee.2018.06.012

    Article  Google Scholar 

  • Scholtz CH, Davis ALV, Kryger U (2009a) Effects of habitat destruction and fragmentation on dung beetles. In: Evolutionary biology and conservation of dung beetles. Pensoft, Sofia-Moscow, pp 413–454

    Google Scholar 

  • Scholtz CH, Davis ALV, Kryger U (2009b) Food and feeding in dung beetles. In: Scholtz CH, Davis ALV, Kryger U Evolutionary biology and conservation of dung beetles. Pensoft, Sofia-Moscow, pp 121–146

    Google Scholar 

  • Scholtz CH, Davis ALV, Kryger U (2009c) Evolution of feeding, competition and life history strategies. In: Scholtz CH, Davis ALV, Kryger U Evolutionary biology and conservation of dung beetles. Pensoft, Sofia-Moscow, pp 40–61

    Google Scholar 

  • SIAP (Servicio de Información Agroalimentaria y Pesquera) (2018) Población ganadera. Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación (SAGARPA). https://www.gob.mx/cms/uploads/attachment/file/412568/Ovino__2017.pdf (accessed 3 Jan 2019)

  • Simmons LW, Ridsdill-Smith TJ (2011) Ecology and evolution of dung beetles. John Wiley and Sons, Oxford

    Book  Google Scholar 

  • Socolar JB, Gilroy JJ, Kunin WE, Edwards DP (2016) How should beta-diversity inform biodiversity conservation? Trends Ecol Evol 31:67–80

    Article  Google Scholar 

  • UNESCO (United Nations Educational, Scientific and Cultural Organization) (2017) Comarca Minera, Hidalgo UNESCO Global Geopark (Mexico) http://www.unesco.org/new/en/natural-sciences/environment/earth-sciences/unesco-global-geoparks/list-of-unesco-global-geoparks/mexico/comarca-minera-hidalgo/ (accessed 5 Jan 2019)

  • Vaz-de-Mello FZ, Edmonds WD, Ocampo FC, Schoolmeesters P (2011) A multilingual key to the genera and subgenera of the subfamily Scarabaeinae of the New World (Coleoptera: Scarabaeidae). Zootaxa 2854:1–73

    Article  Google Scholar 

  • Vélez A, Espinosa JA, De la Cruz L, Rangel J, Espinoza I, Barba C (2016) Caracterización de la producción de ovino de carne del estado de Hidalgo, Mexico. Arch Zootecnia 65(251):425–428

    Article  Google Scholar 

  • Venables WN, Ripley BD (2013) Modern applied statistics with S-PLUS. Springer Science and Business Media, New York

    Google Scholar 

  • Wang L, Delgado-Baquerizo M, Wang D, Isbell F, Liu J, Feng Ch, Liu J, Zhong Z, Zhu H, Yuan X, Chang Q, Liu Ch (2019) Diversifying livestock promotes multidiversity and multifunctionality in managed grasslands. Proc Natl Acad Sci 116:6187–6192

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are very grateful to Fernando Escobar Hernández and Pablo Minor Montiel (Instituto de Ecología, A.C.) for their help in the identification of dung beetle specimens. This contribution was funded by Basic Science Project #222632 (SEP-CONACYT). C.L.R.-D. and I.J.O.-M. were awarded with scholarships by Consejo Nacional de Ciencia y Tecnología (No. 247511 and 606793, respectively) to pursue their graduate studies in Biodiversity and Conservation at Universidad Autónoma del Estado de Hidalgo.

Author information

Authors and Affiliations

Authors

Contributions

Field research: CLR-D, IJO-M; Research design: CLR-D, CEM, IZ, FE, IC; Advice on data analysis: IZ, FE; Manuscript preparation: CLR-D, CEM, IJO-M, IZ, FE, IC.

Corresponding author

Correspondence to C. Lucero Ríos-Díaz.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Informed consent

No human participants are involved in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 380 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ríos-Díaz, C.L., Moreno, C.E., Ortega-Martínez, I.J. et al. Sheep herding in small grasslands promotes dung beetle diversity in a mountain forest landscape. J Insect Conserv 25, 13–26 (2021). https://doi.org/10.1007/s10841-020-00277-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-020-00277-5

Keywords

Navigation