Skip to main content

Advertisement

Log in

Population biology, natural history and conservation of two endangered high elevation Neotropical butterflies

  • ORIGINAL PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

The southeastern Brazilian highlands harbor a high number of endemic and threatened species of animals and plants, including two species of Pampasatyrus butterflies (Satyrinae: Pronophilina). As for many other threatened Brazilian butterflies, there is virtually no biological information available for these butterflies. A mark-recapture study was carried out for two consecutive years (2017 and 2018) to study population parameters, movement, natural history and threats for the two Pampasatyrus species. The results showed that population parameters of both species are similar to those of satyrine butterfly species from temperate regions, including a single flight season, short adult lifespan and a typical pattern of protandry (adult males flying before females). Moreover, adults were shown to have high habitat fidelity, being restricted to natural grassland, and are mostly sedentary. Both studied species are seriously threatened by human-caused impacts, including urban expansion, presence of non-native large grazing animals, uncontrolled tourism and natural and man-made fires. Although none of these impacts have been directly measured, a fire that consumed more than 70% of the study area in the winter of 2017 did not cause the extinction of the populations of both species, as evidenced by population numbers in 2018. The present study contributes important data on the population biology and ecology of these two threatened butterflies, providing information that can be used for future management plans of these species and their habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allen CE, Zwaan BJ, Brakefield PM (2011) Evolution of sexual dimorphism in the Lepidoptera. Annu Rev Entomol 56:445–464

    CAS  PubMed  Google Scholar 

  • Andrade RB, Balch JK, Carreira JY, Brando PM, Freitas AVL (2017) The impacts of recurrent fires on diversity of fruit-feeding butterflies in a south-eastern Amazon forest. J Trop Ecol 33:22–32

    Google Scholar 

  • Assis MV, Mattos EA (2016) Vulnerabilidade da vegetação de campos de altitude às mudanças climáticas. Oecol Aust 20:24–36

    Google Scholar 

  • Aximoff I (2011) O que perdemos com a passagem do fogo pelos campos de altitude do Estado do Rio de Janeiro. Biodiv Bras 2:180–200

    Google Scholar 

  • Barton BJ, Bach CE (2005) Habitat use by the federally endangered Mitchell’s satyr butterfly (Neonympha mitchellii mitchellii) in a Michigan prairie fen. Am Midl Nat 153:41–51

    Google Scholar 

  • Beirão MV, Campos-Neto FC, Pimenta IA, Freitas AVL (2012) Population biology and natural history of Parides burchellanus (Papilionidae: Papilioninae: Troidini), an endangered Brazilian butterfly. Ann Entomol Soc Am 105:36–43

    Google Scholar 

  • Beniston M (2006) Mountain weather and climate: a general overview and a focus on climatic change in the Alps. Hydrobiologia 562:3–16

    Google Scholar 

  • Behling H, Pillar VD, Bauermann SG (2005) Late Quaternary grassland (Campos), gallery forest, fire and climate dynamics, studied by pollen, charcoal and multivariate analysis of the São Francisco de Assis core in western Rio Grande do Sul (southern Brazil). Rev Palaeobot Palynol 33:235–248

    Google Scholar 

  • Bond-Buckup G (2008) Biodiversidade dos Campos de Cima da Serra. Libretos, Porto Alegre

    Google Scholar 

  • Brakefield PM (1982) Ecological studies on the butterfly Maniola jurtina in Britain. II. Population dynamics: the present position. J Anim Ecol 51:727–738

    Google Scholar 

  • Brown IL, Ehrlich PR (1980) Population biology of the checkerspot butterfly, Euphydryas chalcedona structure of the Jasper Ridge colony. Oecologia 47:239–251

    PubMed  Google Scholar 

  • Brussard PF, Ehrlich PR (1970) The population structure of Erebia epipsodea (Lepidoptera: Satyridae). Ecology 51:119–129

    Google Scholar 

  • Brussard PF, Ehrlich PR, Singer MC (1974) Adult movements and population structure in Euphydryas editha. Evolution 28:408–415

    CAS  PubMed  Google Scholar 

  • Casagrande MM, Mielke OHH (2008a) Pseudocercyonis glaucope boenninghausi [sic] (Foetterle, 1902). In: Machado ABM, Drummond GM, Paglia AP (ed) Livro Vermelho da Fauna Brasileira Ameaçada de Extinção. Ministério do Meio Ambiente, Fundação Biodiversitas, Brasília–DF, Belo Horizonte-MG, pp. 426

  • Casagrande MM, Mielke OHH (2008b) Pampasatyrus gyrtone (Berg, 1877). In: Machado ABM, Drummond GM, Paglia AP (ed) Livro Vermelho da Fauna Brasileira Ameaçada de Extinção. Ministério do Meio Ambiente, Fundação Biodiversitas, Brasília–DF, Belo Horizonte–MG, pp. 423

  • Čelik T (2004) Population dynamics of endangered species Coenonympha oedippus Fabricius, 1787 (Lepidoptera: Satyridae) on the Ljubljansko barje. Acta Entomol Sloven 12:99–114

    Google Scholar 

  • Čelik T, Vreš B, Seliškar A (2009) Determinants of within-patch microdistribution and movements of endangered butterfly Coenonympha oedippus (Fabricius, 1787) (Nymphalidae: Satyrinae). Hacquetia 8:115–128

    Google Scholar 

  • Cepagri (2017) Clima dos Municípios Paulistas: Campos do Jordão. https://www.cpa.unicamp.br/outras-informacoes/clima_muni_111.html. Accessed 20 Nov 2017

  • Cerdeña JA, Pyrcz TW, Zacca T (2014) Mariposas altoandinas del sur del Perú: I. Satyrinae de la puna xerofítica, con la descripción de dos nuevos taxones y tres nuevos registros para Perú (Lepidoptera: Nymphalidae). Rev Peru Biol 21:213–222

    Google Scholar 

  • Chichorro F, Juslén A, Cardoso P (2019) A review of the relation between species traits and extinction risk. Biol Conserv 237:220–229

    Google Scholar 

  • Cook LM, Frank K, Brower LP (1971) Experiments on the demography of tropical butterflies. I. Survival rate and density in two species of Parides. Biotropica 3:17–20

    Google Scholar 

  • Cook LM, Brower LP, Croze HJ (1967) The accuracy of a population estimation from multiple recapture data. J Anim Ecol 36:57–60

    Google Scholar 

  • d’Abrera B (2006) World butterflies. Hill House Publishers, Melbourne

    Google Scholar 

  • Ehl S, Holzhauer SI, Ryrholm N, Schmitt T (2019) Phenology, mobility and behaviour of the arcto-alpine species Boloria napaea in its arctic habitat. Sci Rep 9:1–9

    CAS  Google Scholar 

  • Ehrlich PR (1965) The population biology of the butterfly, Euphydryas editha. II. The structure of the Jasper Ridge colony. Evolution 19:327–336

    Google Scholar 

  • Ehrlich PR, Gilbert LE (1973) Population structure and dynamics of the tropical butterfly Heliconius ethilla. Biotropica 5:69–82

    Google Scholar 

  • Emmel TC (1970) The population biology of the neotropical Satyrid butterfly, Euptychia hermes. I. Interpopulation, movement, general ecology. Biología poblacional de la mariposa neotropical, Euptychia hermes. I. Interpoblación, movimiento, ecología general. J Res Lepidoptera 7:153–165

    Google Scholar 

  • Emmel TC, Mattoon SO (1972) Cercyonis pegala blanca, a "missing type" in the evolution of the genus Cercyonis (Satyridae). J Lepid Soc 26:140–149

    Google Scholar 

  • Fagerström T, Wiklund C (1982) Why do males emerge before females? Protandry as a mating strategy in male and female butterflies. Oecologia 52:164–166

    PubMed  Google Scholar 

  • Francini RB (2010) Métodos para estudar ecologia de populações de borboletas.

  • Francini RB (2016) MMRWIN_2016. Programa para estimativas populacionais.

  • Freitas AVL (1993) Biology and population dynamics of Placidula euryanassa, a relict Ithomiine butterfly (Nymphalidae: Ithomiinae). J Lepid Soc 47:87–105

    Google Scholar 

  • Freitas AVL (1996) Population biology of Heterosais edessa (Nymphalidae) and its associated Atlantic Forest Ithomiinae community. J Lepid Soc 50:273–289

    Google Scholar 

  • Freitas AVL, Francini RB, Paluch M, Barbosa EP (2018) A new species of Actinote Hübner (Nymphalidae: Heliconiinae: Acraeini) from southeast Brazil. Rev Bras Entomol 62:135–147

    Google Scholar 

  • Freitas AVL, Vasconcellos-Neto J, Vanin F, Trigo JR, Brown KS Jr (2001) Population studies of Aeria olena and Tithorea harmonia (Nymphalidae, Ithomiinae) in southeastern brazil. J Lepid Soc 55:150–157

    Google Scholar 

  • Freitas AVL, Marini-Filho OJ (2011) Plano de Ação Nacional para Conservação dos Lepidópteros Ameaçados de Extinção. Instituto Chico Mendes de Conservação da Biodiversidade, Brasília

    Google Scholar 

  • Freitas AVL, Ramos RR (2001) Population biology of Parides anchises nephalion (Papilionidae) in a coastal site in Southeast Brazil. Braz J Biol 61:623–630

    CAS  PubMed  Google Scholar 

  • Freitas AVL, Marini-Filho OJ, Mielke OHH, Casagrande MM, Brown Jr KS, Kaminski LA, Iserhard CA, Ribeiro DB, Dias FM, Dolibaina DR, Carneiro E, Uehara-Prado M, Romanowski HP, Emery EO, Accacio GM, Rosa AHB, Bizarro JMS, Silva ARM, Guimarães MP, Silva NAP, Braga L, Almeida G (2018) Voltinia sanarita (Schaus, 1902). In: Instituto Chico Mendes de Conservação da Biodiversidade (ed) Livro Vermelho da Fauna Brasileira Ameaçada de Extinção. Volume VII-Invertebrados. ICMBio, Brasília. pp. 180–182

  • Gascoigne-Pees M, Verovnik R, Franeta F, Popović M (2014) The lifecycle and ecology of Pseudochazara amymone (Brown, 1976) (Lepidoptera: Nymphalidae, Satyrinae). Nachr Entomol Ver Apollo 35:129–138

    Google Scholar 

  • Gall LF (1984) Population structure and recommendations for conservation of the narrowly endemic alpine butterfly, Boloria acrocnema (Lepidoptera: Nymphalidae). Biol Conserv 28:111–138

    Google Scholar 

  • Geise L, Pereira LG, Bossi DEP (2004) Pattern of elevational distribution and richness of non volant mammals in Itatiaia National Park and its surroundings, in southeastern Brazil. Braz J Biol 64:599–612

    CAS  PubMed  Google Scholar 

  • Gonçalves PR, Myers P, Vilela JF, Oliveira JA (2007) Systematics of species of the genus Akodon (Rodentia: Sigmodontinae) in southeastern Brazil and implications for the biogeography of the campos de altitude. Misc publ Mus Zool Univ Mich 197:1–24

    Google Scholar 

  • Huang C-L, Hsu Y-F (2011) The early stages and biology of Minois nagasawae (Matsumura) (Lepidoptera: Nymphalidae, Satyrinae), an alpine butterfly endemic to Taiwan. Proc Entol Soc Wash 113:325–334

    Google Scholar 

  • ICMBio (2018) Livro Vermelho da fauna Brasileira ameaçada de extinção: Volume VII-Invertebrados. ICMBio, Brasília

  • Junker M, Wagner S, Gros P, Schmitt T (2010) Changing demography and dispersal behaviour: ecological adaptations in an alpine butterfly. Oecologia 164:971–980

    PubMed  Google Scholar 

  • Konvička M, Beneš J, Čížek O, Kuras T, Klečková I (2016) Has the currently warming climate affected populations of the mountain ringlet butterfly, Erebia epiphron (Lepidoptera: Nymphalidae), in low-elevation mountains? Eur J Entomol 113:295–301

    Google Scholar 

  • Köppen PW (1936) Das geographische System der Klimate. In: Köppen W, Geiger R (ed) Handbuch der Klimatologie 5 vol. Gebrüder Borntraeger, Berlin, pp. 1–44

  • Kuefler D, Haddad NM, Hall S, Hudgens B, Bartel B, Hoffman E (2008) Distribution, population structure and habitat use of the endangered saint francis satyr butterfly, Neonympha Mitchellii Francisci. Am Midl Nat 159:298–320

    Google Scholar 

  • Kuras T, Benes J, Fric Z, Konvička M (2003) Dispersal patterns of endemic alpine butterflies with contrasting population structures: Erebia epiphron and E. sudetica. Popul Ecol 45:115–123

    Google Scholar 

  • Lörtscher M, Erhardt A, Zettel J (1997) Local movement patterns of three common grassland butterflies in a traditionally managed landscape. Mitt Schweiz Entomol Ges 70:43–56

    Google Scholar 

  • MMA, Ministério do Meio Ambiente (2014) Lista Nacional Oficial de Espécies da Fauna Ameaçadas de Extinção-Anexo I à Portaria Nº 444, de 17 de dezembro de, (2014) Diário Oficial da União, Brasília. DF Seção 1(245):121–126

  • Martinelli G (2007) Mountain biodiversity in Brazil. Rev Bras Bot 30:587–597

    Google Scholar 

  • Matsumoto K (1984) Population dynamics of Luehdorfia japonica Leech (Lepidoptera: Papilionidae) I. A preliminary study on the adult population. Popul Ecol 26:1–12

    Google Scholar 

  • Matsumoto K (1985) Population dynamics of the japanese clouded apollo Parnassius glacialis Butler (Lepidoptera: Papilionidae). I. Changes in population size and related population parameters for three successive generations. Popul Ecol 27:301–312

    Google Scholar 

  • Morbey YE (2013) Protandry, sexual size dimorphism, and adaptive growth. J Theor Biol 339:93–99

    PubMed  Google Scholar 

  • Nimer E (1977) Clima. In: Fundação Instituto Brasileiro de Geografia Estatística (ed) Geografia do Brasil, vol. 3. Região Sudeste. IBGE, Rio de Janeiro pp 51–89

  • Nowicki P, Witek M, Skórka P, Settele J, Woyciechowski M (2005) Population ecology of the endangered butterflies Maculinea teleius and M. nausithous and the implications for conservation. Popul Ecol 47:193–202

    Google Scholar 

  • O’Neill J, Montgomery I (2018) Demographics and spatial ecology in a population of cryptic wood white butterfly Leptidea juvernica in Northern Ireland. J Insect Conserv 22:499–510

    Google Scholar 

  • Örvössy N, Kőrösi Á, Batáry P, Vozár A, Peregovits L (2013) Potential metapopulation structure and the effects of habitat quality on population size of the endangered false ringlet butterfly. J Insect Conserv 17:537–547

    Google Scholar 

  • Overbeck GE, Müller SC, Fidelis A, Pfadenhauer J, Pillar VD, Blanco CC, Boldrinic II, Both R, Forneck ED (2007) Brazil's neglected biome: the South Brazilian Campos. Perspect Plant Ecol Syst 9:101–116

    Google Scholar 

  • Pearson RG, Stanton JC, Shoemaker KT, Aiello-Lammens ME, Ersts PJ, Horning N, Fordham DA, Raxworthy CJ, Ryu HY, McNees J, Akçakaya HR (2014) Life history and spatial traits predict extinction risk due to climate change. Nat Clim Change 4:217–221

    Google Scholar 

  • Penz C, Francini RB (1996) New species of Actinote Hübner (Nymphalidae. Acraeinae) from Southeastern Brazil. J Lepid Soc 5:309–320

    Google Scholar 

  • Pires MM, Galetti M, Donatti CI, Pizo MA, Dirzo R, Guimarães PR (2014) Reconstructing past ecological networks: the reconfiguration of seed-dispersal interactions after megafaunal extinction. Oecologia 175:1247–1256

    PubMed  Google Scholar 

  • Ramos RR, Freitas AVL (1999) Population biology, wing color variation and ecological plasticity in Heliconius erato phyllis (Nymphalidae). J Lepid Soc 53:11–21

    Google Scholar 

  • Ribeiro KT, Freitas L (2010) Impactos potenciais das alterações no Código Florestal sobre a vegetação de campos rupestres e campos de altitude. Biota Neotrop 10:239–246

    Google Scholar 

  • Safford HD (1999) Brazilian páramos I. An introduction to the Brazilian physical environment and vegetation of the campos de altitude. J Biogeogr 26:693–712

    Google Scholar 

  • Safford HD (2007) Brazilian páramos IV. Phytogeography of the campos de altitude. J Biogeogr 34:1701–1722

    Google Scholar 

  • Scalco VW, De Morais ABB, Romanowski HP, Mega NO (2016) Population dynamics of the swallowtail butterfly Battus polystictus polystictus (Butler) (Lepidoptera: Papilionidae) with notes on its natural history. Neotrop Entomol 45:33–43

    CAS  PubMed  Google Scholar 

  • Seixas RR, Santos SE, Okada Y, Freitas AVL (2017) Population biology of the sand forest specialist butterfly Heliconius hermathena hermathena (Hewitson) (Nymphalidae: Heliconiinae) in central Amazonia. J Lepid Soc 71:133–141

    Google Scholar 

  • Slámova I, Klečka J, Konvička M (2013) Woodland and grassland mosaic from a butterly perspective: habitat use by Erebia aethiops (Lepidoptera: Satyridae). Insect Conserv Diver 6:243–254

    Google Scholar 

  • Sielezniew M, Nowicki P (2017) Adult demography of an isolated population of the threatened butterfly Scarce Heath Coenonympha hero and its conservation implications. J Insect Conserv 21:737–742

    Google Scholar 

  • Stillwell RC, Blanckenhorn WU, Teder T, Davidowitz G, Fox CW (2010) Sex Differences in phenotypic plasticity affect variation in sexual size dimorphism in Insects: from physiology to evolution. Annu Rev Entomol 55:227–245

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schwarzwälder B, Lörtscher M, Erhardt A, Zettel J (1997) Habitat utilization by the heath fritillary butterfly, Mellicta athalia ssp. celadussa (Rott.) (Lepidoptera: Nymphalidae) in montane grasslands of different management. Biol Conserv 82:157–165

    Google Scholar 

  • Swengel AB (2001) A literature review of insect responses to fire, compared to other conservation managements of open habitat. Biodivers Conserv 10:1141–1169

    Google Scholar 

  • Szymanski J, Shuey J, Oberhauser K (2004) Population Structure of the endangered Mitchell’s satyr, Neonympha mitchellii mitchellii (French): implications for conservation. Am Midl Nat 152:304–322

    Google Scholar 

  • Tingley R, Hitchmough RA, Chapple DG (2013) Life-history traits and extrinsic threats determine extinction risk in New Zealand lizards. Biol Conserv 165:62–68

    Google Scholar 

  • Thomas JA, Simcox DJ, Hovestadt T (2011) Evidence based conservation of butterflies. J Insect Conserv 15:241–258

    Google Scholar 

  • Tudor O, Parkin DT (1979) Studies on phenotypic variation in Maniola jurtina (Lepidoptera: Satyridae) in the Wyre forest, England. Heredity 42:91–104

    Google Scholar 

  • Turlure C, Choutt J, Van Dyck H, Baguette M, Schtickzelle N (2010) Functional habitat area as a reliable proxy for population size: case study using two butterfly species of conservation concern. J Insect Conserv 14:379–388

    Google Scholar 

  • Vasconcelos VV (2014) Campos de altitude, campos rupestres e aplicação da lei da mata atlântica: estudo prospectivo para o estado de Minas Gerais. Boletim de Geografia 32:110–133

    Google Scholar 

  • Vasconcelos MF, Rodrigues M (2010) Avifauna of southeastern Brazilian mountaintops. Pap Avulsos Zool 50:1–29

    Google Scholar 

  • Watt WB, Chew FS, Snyder LR, Watt AG, Rothschild DE (1977) Population structure of pierid butterflies. Oecologia 27:1–22

    PubMed  Google Scholar 

  • Wiklund C, Fagerström T (1977) Why do males emerge before females? A hypothesis to explain the incidence of protandry in butterflies. Oecologia 31:153–158

    PubMed  Google Scholar 

  • Zacca T, Mielke OHH, Pyrcz TW, Dias FMS, Casagrande MM, Boyer P (2017) Systematics of the Neotropical genus Pampasatyrus Hayward, 1953 (Lepidoptera: Satyrinae: Pronophilina), with description of three new taxa. Insect Syst Evol 48:201–255

    Google Scholar 

  • Zaman K, Tenney C, Rush CE, Hill RI (2015) Population Ecology of a California endemic: Speyeria adiaste clemencei. J Insect Conserv 19:753–763

    Google Scholar 

  • Zonneveld C (1992) Polyandry and protandry in butterflies. Bull Math Biol 54:957–976

    Google Scholar 

  • Zonneveld C, Metz J (1991) Models on butterfly protandry: virgin females are at risk to die. Theor Popul Biol 40:308–321

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Flávia Ramos, Elisa Ramos, Lucas Espindola e Moises Luna for all logistical support, Marina Beirão, Ricardo Solar and Claudia Jacobi for several suggestions and critical reading on a previous version of the manuscript. Martin Konvička carefully read the submitted version, making valuable suggestions to improve the final version. Juliana A. Oliveira and Marcelo M. Egea helped with identification of nectar sources and Samuel Costa for mite identification. Special thanks to Keith Willmott, who kindly revised the accepted version of the manuscript. To the ICMBio for the research permits (SISBIO nº 10802-5 and 53016-7). AHBR thanks Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, 130314/2016-1), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brazil (CAPES)—Finance Code 001. AVLF acknowledges support from FAPESP (Biota-Fapesp—2011/50225-3), from CNPq (303834/2015-3) and from the National Science Foundation (DEB-1256742). This publication is part of the RedeLep “Rede Nacional de Pesquisa e Conservação de Lepidópteros” SISBIOTA-Brasil/CNPq (563332/2010-7). This study is registered in SISGEN (A3D306A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André V. L. Freitas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 12225 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosa, A.H.B., Ribeiro, D.B. & Freitas, A.V.L. Population biology, natural history and conservation of two endangered high elevation Neotropical butterflies. J Insect Conserv 24, 681–694 (2020). https://doi.org/10.1007/s10841-020-00242-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-020-00242-2

Keywords

Navigation