Skip to main content

Temporal shifts in butterfly diversity: responses to natural and anthropic forest transitions

Abstract

Butterfly species often synchronize their life cycles to seasonality, as increasing temperature and rainfall act as clues of resource availability. Nevertheless, human-made forest edges cause major changes in the microclimatic conditions that may jeopardize the synchrony between insects and favorable conditions for their emergence, conversely to natural ecotones. Here, the distribution of fruit-feeding butterflies was studied over one year in three different habitats (forest interior, forest ecotone, forest edge) to examine if: (i) species richness and abundance varies among habitats and subfamily/tribe over the year; (ii) temperature and rainfall affect the abundance and temporal distribution of species richness; and (iii) the beta diversity and its monthly partition are similar among habitats. The present study was carried out in the Rio Doce State Park, Brazil, a 36,000 ha forest reserve. In total, 11,594 individuals representing 98 butterfly species were collected. The butterflies presented a nonuniform distribution of abundance in all habitats, with greater abundance, richness and species diversity during the wet season. Butterfly abundance increased with high temperatures in all habitats. The contribution of species turnover and nestedness varied over the months, overlapping with the seasonal changes. Understanding how rates of species turnover vary over time in different habitats can help explain the vulnerability of species to environmental changes, allowing comparison of assemblages over time.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Agostinelli C, Lund U (2017) R package ‘circular’: Circular statistics. Version 0.4–93. https://r-forge.r-project.org/projects/circular/. Accessed 28 August 2017

  • Aide M (1993) Patterns of leaf development and herbivory in a tropical understory community. Ecology 74:455–466

    Article  Google Scholar 

  • Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G (2014) Köppen’s climate classification map for Brazil. Meteorol Z 22:128–711

    Google Scholar 

  • Barbosa BC (2014) Arquitetura de ramos, alocação de biomassa e herbivoria em duas espécies arbóreas com diferentes histórias de vida em uma Floresta Tropical Semidecidual. M.Sc. Thesis, Universidade Federal de Minas Gerais. Available from: http://www.bibliotecadigital.ufmg.br/dspace/handle/1843/BUOS-9K5HF7

  • Baselga A, Bonthoux S, Balent G (2015) Temporal beta diversity of bird assemblages in agricultural landscapes: land cover change vs. stochastic processes. PLoS ONE 10:1–14

    Article  CAS  Google Scholar 

  • Basset Y, Barrios H, Segar S, Srygley RB, Aiello A, Warrens AD, Delgado F, Coronado J, Lezcano J, Arizala S, Rivera M, Perez F, Bobadilla R, Lopez Y, Ramirez JA (1930s) The butterflies of Barro Colorado Island, Panama: local extinction since the 1930s. PLoS ONE 10:1–22

    Google Scholar 

  • Beirão MV, Neves FS, Penz CM, Devries PJ, Fernandes GW (2017) High butterfly beta diversity between Brazilian cerrado and cerrado-caatinga transition zones. J Insect Conserv 21:1–12

    Article  Google Scholar 

  • Bonebrake TC, Ponisio LC, Boggs CL, Ehrlich PR (2010) More than just indicators: a review of tropical butterfly ecology and conservation. Biol Conserv 143:1831–1841

    Article  Google Scholar 

  • Brown KS (1992) Borboletas da Serra do Japi: diversidade, habitats, recursos alimentares e variação temporal. In: Morellato LPC (ed) História Natural da Serra do Japi: Ecologia e Preservação de uma Área Florestal no Sudeste do Brasil. Unicamp, Campinas, pp 142–186

    Google Scholar 

  • Carreira JYO (2015) Dinâmica temporal e sazonalidade de borboletas frugívoras na Mata Atlântica. Dissertation, Universidade Estadual de Campinas

  • Cbh-Doce—Comitê da Bacia Hidrográfica do Rio Doce (2009) Parque Estadual do Rio Doce. https://www.riodoce.cbh.gov.br/. Accessed 26 September 2013

  • Coley PD (1983) Herbivory and defensive characteristics of tree species in a lowland tropical forest. Ecol Monogr 53:209–234

    Article  Google Scholar 

  • Colwell RK, Coddington JA (1994) Terrestrial biodiversity through extrapolation. Phil Trans R Soc Lond 345:101–118

    Article  CAS  Google Scholar 

  • Dáttilo W, Vasconcelos HL (2019) Macroecological patterns and correlates of ant-tree interaction networks in Neotropical savannas. Global Ecol Biogeogr 00:1–12

    Google Scholar 

  • Devries PJ (1987) The butterflies of Costa Rica and their natural history. Princeton University Press, Princeton

    Google Scholar 

  • Devries PJ, Hamm CA, Fordyce JA (2016) A standardized sampling protocol for fruit-feeding butterflies (Nymphalidae). In: Larsen TH (ed) Core Standardized Methods for Rapid Biological Field Assessment. Conservation International, Arlington, pp 140–148

    Google Scholar 

  • Devries PJ, Walla TR, Greeney HF (1999) Species diversity in spatial and temporal dimensions of fruit-feeding butterflies from two Ecuadorian rainforests. Biol J Linn Soc 68:333–353

    Article  Google Scholar 

  • Didham RK, Springate ND (2003) Determinants of temporal variation in community structure. In: Basset Y et al. (eds) Arthropods of tropical forests: spatio-temporal dynamics and resource use in the canopy. Cambridge University Press, Cambridge, pp 28–39

    Google Scholar 

  • Fischer K, DM, O’brien, CL, Boggs (2004) Allocation of larval and adult resources to reproduction in a fruit-feeding butterfly. Funct Ecol 18:656–663

    Article  Google Scholar 

  • Fonseca-Silva FM, Carvalho MA, Ribeiro SP (2015) Caracterização da matéria orgânica particulada dos últimos 10 mil anos a partir de um testemunho do Parque Estadual do Rio Doce, Mg, Brasil: implicações paleoambientais. Rev Bras Paleontol 18:161–170

    Article  Google Scholar 

  • Freire GBJ, Nascimento AR, Malinov IK, Diniz IR (2014) Temporal occurrence of two Morpho butterflies (Lepidoptera: Nymphalidae): influence of weather and food resources. Environ Entomol 43:274–282

    Article  PubMed  Google Scholar 

  • Freitas AVL, Brown KS (2004) Phylogeny of Nymphalidae (Lepidoptera). Syst Biol 53:363–383

    Article  PubMed  Google Scholar 

  • Freitas AVL, Iserhard CA, Santos JP, Carreira JYO, Ribeiro DB, Melo DHA, Rosa AHB, Marini-Filho OJ, Accacio GM, Uehara-Prado M (2014) Studies with butterfly bait traps: an overview. Rev Colomb Entomol 40:203–212

    Google Scholar 

  • Grøtan V, Lande R, Chacon IA, Devries PJ (2014) Seasonal cycles of diversity and similarity in a Central American rainforest butterfly community. Ecography 37:509–516

    Google Scholar 

  • Grøtan V, Lande R, Engen S, Sæther BE, Devries PJ (2012) Seasonal cycles of species diversity and similarity in a tropical butterfly community. J Anim Ecol 81:714–723

    Article  PubMed  Google Scholar 

  • Gullan PJ, Cranston PS (2010) The insects: an outline of entomology. Wiley-Blackwell Ltd, Oxford

    Google Scholar 

  • Hamer KC, Hill JK, Mustaffa N, Benedick S, Sherratt TN, Chey VK, Maryati M (2005) Temporal variation in abundance and diversity of butterflies in Bornean rain forests: opposite impacts of logging recorded in different seasons. J Trop Ecol 21:417–425

    Article  Google Scholar 

  • Hamer KC, Hill JK, Benedick S, Mustaffa N, Chey VK, Maryati M (2006) Diversity and ecology of carrion- and fruit-feeding butterflies in Bornean rain forest. J Trop Ecol 22:25–33

    Article  Google Scholar 

  • Hunter AF, Lechowicz MJ (1992) Foliage quality changes during canopy development of some northern hardwood trees. Oecologia 89:316–323

    Article  PubMed  Google Scholar 

  • Holland MM (1988) Scope/Mab Technical Consultations on Landscape Boundaries. Report of a Scope/Mab Workshop on Ecotones. In: Castri F, Hansen AJ, Holland MM (ed) A new look at Ecotones: Emerging International Projetcts on Landscape Boundaries. Special inssue 17. The Internacional Uni on of Biological Scienses, pp 47–106

  • Jammalamadaka SR, Sengupta A (2001) Topics in circular statistics Series on multivariate analysis. World Scientific publishing, Singapore

    Book  Google Scholar 

  • Kishimoto-Yamada K, Itioka T (2015) How much have we learned about seasonality in tropical insect abundance since Wolda (1988)? Entomol Sci 18:407–419

    Article  Google Scholar 

  • Lourenço GM, Soares GR, Santos TP, Dáttilo W, Freitas AVL, Ribeiro SP (2019) Equal but different: natural ecotones are dissimilar to anthropogenic edges. PLoS ONE 14:1–18

    Google Scholar 

  • Magurran AE (2007) Species abundance distributions over time. Ecol Lett 10:347–354

    Article  PubMed  Google Scholar 

  • Morellato LPC, Leitão-Filho HF (1992) Padrões de frutificação e dispersão na Serra do Japi. In: Morellato LPC (ed) História Natural da Serra do Japi: Ecologia e Preservação de uma Área Florestal no Sudeste do Brasil. Unicamp, Campinas, pp 112–141

    Google Scholar 

  • Morellato LPC, Talora DC, Takahasi A, Bencke CC, Romera EC, Zipparro VB (2000) Phenology of Atlantic Rain Forest trees: a comparative study. Biotropica 32:811–823

    Article  Google Scholar 

  • Murakami M, Ichie T, Hirao T (2008) Beta-diversity of lepidopteran larval communities in a Japanese temperate forest: effects of phenology and tree species. Ecol Res 23:179–187

    Article  Google Scholar 

  • Murcia C (1995) Edge effects in fragmented forests: implications for conservation. TREE 10:58–62

    CAS  PubMed  Google Scholar 

  • Peters MK, Hemp A, Appelhans T, Behler C, Classen A, Detsch F, Ensslin A, Ferger SW, Frederiksen SB, Gebert F, Haas M, Helbig-Bonitz M, Hemp C, Kindeketa WJ, Mwangomo E, Ngereza C, Otte I, Röder J, Rutten G, Costa DS, Tardanico J, Zancolli G, Deckert J, Eardley CD, Peters RS, Rödel MO, Schleuning M, Ssymank A, Kakengi V, Zhang J, Böhning-Gaese K, Brandl R, Kalko EKV, Kleyer M, Nauss T, Tschapka M, Ficher M, Steffan-Dewenter I (2016) Predictors of elevation biodiversity gradients change from single taxa to the multi-taxa community level. Nat Commun 7:1–11

    Google Scholar 

  • R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/. Accessed 08 June 2017

  • Ribeiro DB, Freitas AVL (2010) Differences in thermal responses in a fragmented landscape: temperature affects the sampling of diurnal, but not nocturnal fruit-feeding Lepidoptera. J Res Lepid 42:1–4

    Google Scholar 

  • Ribeiro DB, Freitas AVL (2011) Large-sized insects show stronger seasonality than small-sized ones: a case study of fruit-feeding butterflies. Biol J Linn Soc 104:820–827

    Article  Google Scholar 

  • Ribeiro DB, Freitas AVL (2012) The effect of reduced-impact logging on fruit-feeding butterflies in Central Amazon, Brazil. J Insect Conserv 16:733–744

    Article  Google Scholar 

  • Ribeiro SP, Borges PP, Gaspar C, Melo C, Serrano ARM, Amaral J, Aguiar C, Andre G, Quartau JA (2005) Canopy insect herbivores in the Azorean Laurisilva forests: key host plant species in a highly generalist insect community. Ecography 28:315–330

    Article  Google Scholar 

  • Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ, Hirota MM (2009) The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv 142:1141–1153

    Article  Google Scholar 

  • Ribeiro DB, Prado PI, Brown KS, Freitas AVL (2010) Temporal diversity patterns and phenology in fruit-feeding butterflies in the Atlantic Forest. Biotropica 42:710–716

    Article  Google Scholar 

  • Ribeiro SP, Pimenta HR, Fernandes GW (1994) Herbivory by chewing and sucking insects on Tabebuia ochracaea. Biotropica 26:302–307

    Article  Google Scholar 

  • Ruxton GD (2017) Testing for departure from uniformity and estimating mean direction for circular data. Biol Lett 13:20160756

    Article  PubMed  PubMed Central  Google Scholar 

  • Santos JP, Marini-Filho OJ, Freitas AVL, Uehara-Prado M (2016) Monitoramento de borboletas: o papel de um indicador biológico na gestão de Unidades de Conservação. Biodiversidade Brasileira 6:87–99

    Google Scholar 

  • Santos JP, Iserhard CA, Carreira JYO, Freitas AVL (2017) Monitoring fruit-feeding butterfly assemblages in two vertical strata in seasonal Atlantic Forest: temporal species turnover is lower in the canopy. J Trop Ecol 33:345–355

    Article  Google Scholar 

  • Sant’anna CLB, Ribeiro DB, Garcia LC, Freitas AVL (2014) Fruit-feeding butterfly communities are influenced by restoration age in tropical forests. Restor Ecol 22:480–485

    Article  Google Scholar 

  • Saunders DA, Hobbs RJ, Margules CR (1991) Biological consequences of ecosystem fragmentation: a review. Conserv Biol 5:18–32

    Article  Google Scholar 

  • Steffen W, Richardson K, Rockstrom J, Cornell SE, Fetzer I, Bennett EM, Biggs R, Carpenter SR, Vries W, Wit CA, Folke C, Gerten D, Heinke J, Mace GM, Persson LM, Ramanathan V, Reyers B, Sörlin S (2015) Planetary boundaries: guiding human development on a changing planet. Science 347:1259855

    Article  CAS  PubMed  Google Scholar 

  • Torres-Vila LM, Rodríguez-Molina MC (2002) Egg size variation and its relationship with larval performance in the Lepidoptera: the case of the European grapevine moth Lobesia botrana. Oikos 99:272–283

    Article  Google Scholar 

  • Thomas JA (2016) Butterfly communities under threat. Science 353:216–218

    Article  CAS  PubMed  Google Scholar 

  • Uehara-Prado M, Brown KS, Freitas AVL (2007) Species richness, composition and abundance of fruit-feeding butterflies in the Brazilian Atlantic Forest: comparison between a fragmented and a continuous landscape. Global Ecol Biogeogr 16:43–54

    Article  Google Scholar 

  • Wolda H (1988) Insect seasonality: why? Ann Rev Ecol Evol Syst 19:1–18

    Article  Google Scholar 

  • Wolda H (1989) Seasonal cues in tropical organisms. Rainfall? Not necessarily! Oecologia 80:437–442

    Article  PubMed  Google Scholar 

  • Wahlberg N, Leneveu J, Kodandaramaiah U, Peña C, Nylin S, Freitas AVL, Brower AVZ (2009) Nymphalid butterflies diversify following near demise at the Cretaceous/Tertiary boundary. Proc R Soc B 276:4295–4302

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Talita P. Santos, Gloria R. Soares, Sidimario Freitas, Christiano Rocha, Leila Shirai, Tamara M. C. Aguiar, Patrícia A. Machado, Jessie P. Santos, Luiz Rocha, Caio Muniz, Simeão Moraes for assistance with fieldwork. To Jack Longino for suggesting the term “brought low canopy” to describe the ecotone habitat. Mathias M. Pires, Marina Beirão, Yves Basset, Danilo B. Ribeiro, Flávio A.M. dos Santos, Júlio N.C. Louzada carefully read and criticized the last version of the manuscript. We gratefully acknowledge the staff of the Instituto Estadual de Florestas (IEF-MG) and Parque do Rio Doce (PERD) for allowing us to work in the park and provide logistical support. We thank the transport sector of the Universidade Federal de Ouro Preto for providing the transportation in all fieldwork. Butterfly specimens are registered at SISGEN (Sistema Nacional de Gestão do Patrimônio Genético e do Conhecimento Tradicional Associado)—#A4156F5. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001, Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq (478481/2013-6) and Fundação de Amparo à Pesquisa de Minas Gerais—FAPEMIG (APQ-01184-15). GML thanks for a research scholarship from CNPq (155895/2014-1) and CAPES (88881.133074/2016-01). PL has a student fellowship (CVU 771366 from the Consejo Nacional de Ciencia y Tecnología (CONACYT), Mexico. AVLF thanks the CNPq (302585/2011-7, 303834/2015-3) and SISBIOTABrasil/CNPq (563332/2010-7), the National Science Foundation (DEB-1256742) and the BIOTA-FAPESP Program (2011/50225-3, 2013/50297-0). SPR was granted by the CNPq (478481/2013-6, 304024/2015-5) and FAPEMIG (APQ-01184-15).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Lourenço.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Permits for the field studies

Permits for the field studies were issued by the state authority Instituto Estadual de Florestas (IEF) and the national authority Sistema de Autorização e Informação em Biodiversidade/Instituto Chico Mendes de Conservação da Biodiversidade (SISBIO/ ICMBio).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10841_2019_207_MOESM1_ESM.pdf

ESM 1 Fruit-feeding butterflies species recorded in the wet season in each habitat (forest interior, ecotone, edge), in Rio Doce State Park, state of Minas Gerais, Brazil. Some species absent in these months (wet season) were maintained here because this continues in the following table (PDF 285 kb)

10841_2019_207_MOESM2_ESM.pdf

Fruit-feeding butterflies species recorded in the dry season in each habitat (forest interior, ecotone, edge), in Rio Doce State Park, state of Minas Gerais, Brazil. Note that due to the temporal window of the study the dry season was broken between the end of dry season of 2015 and the early of dry season of 2016. Some species absent in these months (dry season) were maintained here because this is a continuity of previous table (PDF 226 kb)

10841_2019_207_MOESM3_ESM.pdf

ESM 3 Rarefaction analyses of fruit-feeding butterfly species richness for habitat (forest interior, ecotone, edge), in Rio Doce State Park, Brazil. Actual monthly species richness plotted against an individual-based accumulation curve for the total assemblage for habitat; The numbers correspond to the 12 months of the year (PDF 179 kb)

10841_2019_207_MOESM4_ESM.pdf

Temporal partitioning of beta-diversity of fruit-feeding butterflies among months (β) of a year by habitat, in Rio Doce State Park, Brazil. The dark grey color represents Turnover, the light grey color represents Nestedness and the shaded area represents wet season (PDF 133 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lourenço, G.M., Luna, P., Guevara, R. et al. Temporal shifts in butterfly diversity: responses to natural and anthropic forest transitions. J Insect Conserv 24, 353–363 (2020). https://doi.org/10.1007/s10841-019-00207-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-019-00207-0

Keywords

  • Beta diversity
  • Circular analyses
  • Ecotone
  • Insect seasonality
  • Lepidoptera